225
Views
42
CrossRef citations to date
0
Altmetric
REVIEWS

Nonthermal Biological Effects of Microwaves: Current Knowledge, Further Perspective, and Urgent Needs

Pages 375-403 | Published online: 07 Jul 2009

References

  • Adey, W.R. Cell and molecular biology associated with radiation fields of mobile telephones. In Review of Radio Science, 1996–1999; Ueno, S., Ed.; Oxford University Press: Oxford, 1999; 845–872.
  • Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of microwave-a brief review. Bioresour. Technol. 2003, 87, 155–159. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Shcheglov, V.S.; , et al. Non-thermal effects of extremely high frequency microwaves on chromatin conformation in cells in vitro: dependence on physical, physiological and genetic factors. IEEE Transactions on Microwave Theory and Techniques 2000, 48, 2172–2179. [CSA], [CROSSREF]
  • Betskii, O.V.; Devyatkov, N.D.; Kislov, V.V. Low intensity millimeter waves in medicine and biology. Crit. Rev. Biomed. Eng. 2000, 28, 247–268. [PUBMED], [INFOTRIEVE], [CSA]
  • Binhi, V.N. Magnetobiology: Underlying Physical Problems. Academic Press: San Diego, 2002; 473.
  • Devyatkov, N.D.; Golant, M.B.; Betskij, O.V. Peculiarities of usage of millimeter waves in biology and medicine (in Russian). IRE RAN: Moscow, 1994; 164.
  • Grigoriev, Y.G.; Stepanov, V.S.; , et al. ISTC Report. Biological effects of radiofrequency electromagnetic fields and the radiation guidelines. Results of experiments performed in Russia/Soviet Union. Institute of Biophysics, Ministry of Health, Russian Federation: Moscow, 2003.
  • Grigoriev, Y.G. Role of modulation in bioeffects of electromagnetic fields (summary of Russian studies) (review in Russian). Annals of the Russian National Committee for Non-Ionizing Radiation Protection 2004. [CSA]
  • Gründler, W.; Jentzsch, V.; , et al. Resonant cellular effects of low intensity microwaves. In Biological Coherence and Response to External Stimuli; Frölich, H., Ed.; Springer-Verlag: Berlin, 1988; 65–85.
  • Iskin, V.D. Biological effects of millimeter waves and correlation method of their detection (in Russian). Osnova: Kharkov, 1990; 244.
  • Lai, H. Biological effects of radiofrequency electromagnetic field. In Encyclopedia of Biomaterials and Biomedical Engineering; Bowlin, G.L., Ed.; Marcel Decker: New York, NY, 2005.
  • Pakhomov, A.G.; Akyel, Y.; , et al. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 1998, 19, 393–413. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Grigoriev, Y.; Nikitina, V.; , et al. The Russian National Committee on Non-Ionizing Radiation Protection (RNCNIRP) and the radiation guidelines. In Transparency Forum for Mobile Telephone Systems; http://www.ssi.se/ickejoniserande_stralning/mobiltele/transpar/PDF/Semi3_Forsiktigh_gransvar.pdf, Ed.; http://members.chello.se/igor.belyaev/guidelines.pdf, Stockholm, 2005.
  • Pakhomov, A.G.; Murphy, M.B. Comprehensive review of the research on biological effects of pulsed radiofrequency radiation in Russia and the former Soviet Union. In Advances in Electromagnetic Fields in Living System; Lin, J.C., Ed.; Kluwer Academic/Plenum Publishers: New York, 2000; 265–290.
  • Sit'ko, S.P. The 1st All-Union Symposium with International Participation Use of Millimeter Electromagnetic Radiation in Medicine; TRC Otklik: Kiev, Ukraine, USSR, 1989.
  • Rea, W.J.; Pan, Y.; , et al. Electromagnetic field sensitivity. Journal of Bioelectricity 1991, 10, 241–256. [CSA]
  • Hardell, L.; Mild, K.H.; , et al. Ionizing radiation, cellular telephones and the risk for brain tumours. Eur. J. Cancer. Prev. 2001, 10, 523–529. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hardell, L.; Mild, K.H.; Carlberg, M. Further aspects on cellular and cordless telephones and brain tumours. Int. J. Oncol. 2003, 22, 399–407. [PUBMED], [INFOTRIEVE], [CSA]
  • Hardell, L.; Eriksson, M.; , et al. Use of cellular or cordless telephones and the risk for non-Hodgkin's lymphoma. Int. Arch. Occup. Environ. Health 2005, DOI 10.1007/s00420-005-0003-5. [CSA]
  • Kundi, M.; Mild, K.; , et al. Mobile telephones and cancer—a review of epidemiological evidence. J. Toxicol. Environ. Health B Crit. Rev. 2004, 7, 351–384. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Lonn, S.; Ahlbom, A.; , et al. Mobile phone use and the risk of acoustic neuroma. Epidemiology 2004, 15, 653–659. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Vilenskaya, R.L.; Smolyanskaya, A.Z.; , et al. Induction of the lethal colicin synthesis in E. coli K12 C600 (E1) by means the millimeter radiation (in Russian). Bull. Eksperim. Biol. Med. 1972, 4, 52–54. [CSA]
  • Devyatkov, N.D. Influence of electromagnetic radiation of millimeter range on biological objects (in Russian). Usp Fiz Nauk 1973, 453–454. [CSA]
  • Gründler, W.; Keilmann, F.; Fröhlich, H. Resonant growth rate response of yeast cells irradiated by weak microwaves. Physiol. Lett. 1977, 62A, 463–466. [CSA], [CROSSREF]
  • Blackman, C.F.; Benane, S.G.; , et al. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics 1980, 1, 35–43. [PUBMED], [INFOTRIEVE], [CSA]
  • Blackman, C.F.; Benane, S.G.; , et al. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation. Bioelectromagnetics 1980b, 1, 277–283. [PUBMED], [INFOTRIEVE], [CSA]
  • Joines, W.T.; Blackman, C.F. Power density, field intensity, and carrier frequency determinants of RF-energy-induced calcium-ion efflux from brain tissue. Bioelectromagnetics 1980, 1, 271–275. [PUBMED], [INFOTRIEVE], [CSA]
  • Adey, W.R.; Bawin, S.M.; Lawrence, A.F. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 1982, 3, 295–307. [PUBMED], [INFOTRIEVE], [CSA]
  • Lin-Liu, S.; Adey, W.R. Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes. Bioelectromagnetics 1982, 3, 309–322. [PUBMED], [INFOTRIEVE], [CSA]
  • Dill, K.; Shafer, R.H. Radial migration of DNA molecules in cylindrical flow. III. Circles and the effect of non-gaussian polymer statistics. Biophys. Chem. 1976, 4, 51–54. [CSA]
  • Shafer, R.H. Radial migration of DNA molecules in cylindrical flow. II. The non-draining model and possible application to fractionation. Biophys. Chem. 1974, 2, 185–188. [CSA]
  • Shafer, R.H.; Laiken, N.; Zimm, B.H. Radial migration of DNA molecules in cylindrical flow. I. Theory of the free-draining model. Biophys. Chem. 1974, 2, 180–184. [CSA]
  • Kriuchkov, V.S.; Popunin, V.A.; , et al. Physical model of the anomalous time dependence effect of viscosity in high molecular weight DNA-protein complex solutions (in Russian). Biofizika 1995, 40, 1202–1207. [PUBMED], [INFOTRIEVE], [CSA]
  • Dill, K.A. Theory for the separation of very large DNA molecules by radial migration. Biophysical Chemistry 1979, 10, 327–334. [CSA], [CROSSREF]
  • Dill, K.A.; Zimm, B.H. A rheological separator for very large DNA molecules. Nucleic Acids Res. 1979, 7, 735–749. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Alipov, Y.D.; , et al. Evidence for dependence of resonant frequency of millimeter wave interaction with Escherichia coli Kl2 cells on haploid genome length. Electro- and Magnetobiology 1993a, 12, 39–49. [CSA]
  • Belyaev, I.Y.; Alipov, Y.D.; Shcheglov, V.S. Chromosome DNA as a target of resonant interaction between Escherichia coli cells and low-intensity millimeter waves. Electro- and Magnetobiology 1992a, 11, 97–108. [CSA]
  • Belyaev, I.Y.; Alipov, Y.D.; , et al. Resonance effect of microwaves on the genome conformational state of E. coli cells. Z Naturforsch [C] 1992b, 47, 621–627. [CSA]
  • Belyaev, I.Y.; Hillert, L.; , et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 2005, 26, 173–184. [CSA]
  • Belyaev, I.Y.; Kravchenko, V.G. Resonance effect of low-intensity millimeter waves on the chromatin conformational state of rat thymocytes. Z Naturforsch [C] 1994, 49, 352–358. [CSA]
  • Belyaev, I.Y.; Shcheglov, V.S.; Alipov, Y.D. Existence of selection rules on helicity during discrete transitions of the genome conformational state of E. coli cells exposed to low-level millimeter radiation. Bioelectrochem Bioenerg 1992c, 27, 405–411. [CSA], [CROSSREF]
  • Belyaev, I.Y.; Shcheglov, V.S.; Alipov, Y.D. Selection rules on helicity during discrete transitions of the genome conformational state in intact and X-rayed cells of E. coli in millimeter range of electromagnetic field. In Charge and Field Effects in Biosystems; Allen, M.J., Cleary, S.F., Sowers, A.E., Shillady, D.D., Eds.; Birkhauser, 1992d; 115–126.
  • Belyaev, I.Y.; Shcheglov, V.S.; , et al. Regularities of separate and combined effects of circularly polarized millimeter waves on E. coli cells at different phases of culture growth. Bioelectrochem. Bioenerg. 1993b, 31, 49–63. [CSA], [CROSSREF]
  • Markova, E.; Hillert, L.; , et al. GSM microwaves affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy persons dependent on carrier frequency. Environmental and Health Perspective 2005a, doi:10.1289/ehp.7561 available via http://dx.doi.org/ [Online 28 April 2005] http://ehp.niehs.nih.gov/docs/2005/7561/abstract.html. [CSA]
  • Sarimov, R.; Malmgren, L.O.G.; , et al. Non-thermal GSM microwaves affect chromatin conformation in human lymphocytes similar to heat shock. IEEE Transactions on Plasma Science 2004, 32, 1600–1608. [CSA], [CROSSREF]
  • Ushakov, V.L.; Shcheglov, V.S.; , et al. Combined effects of circularly polarized microwaves and ethidium bromide on E. coli cells. Electro- and Magnetobiology 1999, 18, 233–242. [CSA]
  • Belyaev, I.Y.; Alipov, Y.D.; Harms-Ringdahl, M. Effects of zero magnetic field on the conformation of chromatin in human cells. Biochim. Biophys. Acta. 1997, 1336, 465–473. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Harms-Ringdahl, M. Effects of gamma rays in the 0.5-50-cGy range on the conformation of chromatin in mammalian cells. Radiat Res 1996, 145, 687–693. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Shcheglov, V.S.; , et al. Resonance effect of millimeter waves in the power range from 10(-19) to 3 × 10(-3) W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics 1996, 17, 312–321. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Belyaev, I.Y.; Czene, S.; Harms-Ringdahl, M. Changes in chromatin conformation during radiation-induced apoptosis in human lymphocytes. Radiat. Res. 2001, 156, 355–364. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Eriksson, S.; , et al. Effects of ethidium bromide on DNA loop organisation in human lymphocytes measured by anomalous viscosity time dependence and single cell gel electrophoresis. Biochim. Biophys. Acta 1999b, 1428, 348–356. [PUBMED], [INFOTRIEVE], [CSA]
  • Shcheglov, V.S.; Belyaev, I.Y.; , et al. Power-dependent rearrangement in the spectrum of resonance effect of millimeter waves on the genome conformational state of E. coli cells. Electro- and Magnetobiology 1997, 16, 69–82. [CSA]
  • Gründler, W. Intensity- and frequency-dependent effects of microwaves on cell growth rates. Bioelectrochem. Bioenerg. 1992, 27, 361–365. [CSA], [CROSSREF]
  • Markova, E.; Hillert, L.; , et al. Adverse effects of microwaves from GSM/UMTS mobile phones depend on carrier frequency and type of signal. In A Joint Meeting of The Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA); Hansson Mild, K., Ed.; http://bioelectromagnetics.org/bioem2005/, Dublin: Ireland, 2005b; 191–192.
  • Tkalec, M.; Malaric, K.; Pevalek-Kozlina, B. Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 2005, 26, 185–193. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Belyaev, I.Y. Some biophysical aspects of the genetic effects of low intensity millimeter waves. Bioelectrochem. Bioenerg. 1992, 27, 11–18. [CSA], [CROSSREF]
  • Golant, M.B. Resonance effect of coherent millimeter-band electromagnetic waves on living organisms (in Russian). Biofizika 1989, 34, 1004–1014. [PUBMED], [INFOTRIEVE], [CSA]
  • Postow, E.; Swicord, M.L. Modulated fields and “window” effects. In CRC Handbook of Biological Effects of Electromagnetic Fields; Postow, E., Ed.; CRC Press: Boca Raton, FL, 1986; 425–460.
  • Kolbun, N.D.; Lobarev, V.E. Problems of bioinformational interaction in millimeter range (in Russian). Kibernet Vychislitelnaya Tekhnika 1988, 78, 94–99. [CSA]
  • Belyaev, I.Y.; Alipov, Y.D.; , et al. Cooperative response of Escherichia coli cells to the resonance effect of millimeter waves at super low intensity. Electro- and Magnetobiology 1994, 13, 53–66. [CSA]
  • Bozhanova, T.P.; Bryukhova, A.K.; Golant, M.B. About possibility to use coherent radiation of extremely high frequency for searching differences in the state of living cells. In Medical and biological aspects of millimeter wave radiation of low intensity; Devyatkov, N.D., Ed.; IRE, Academy of Science: USSR, Fryazino, 1987; 90–97.
  • Shcheglov, V.S.; Alipov, E.D.; Belyaev, I.Y. Cell-to-cell communication in response of E. coli cells at different phases of growth to low-intensity microwaves. Biochim. Biophys. Acta. 2002, 1572, 101–106. [PUBMED], [INFOTRIEVE], [CSA]
  • Diem, E.; Schwarz, C.; , et al. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat. Res. 2005, 583, 178–183. [PUBMED], [INFOTRIEVE], [CSA]
  • Litovitz, T.A.; Krause, D.; , et al. The role of coherence time in the effect of microwaves on ornithine decarboxylase activity. Bioelectromagnetics 1993, 14, 395–403. [PUBMED], [INFOTRIEVE], [CSA]
  • Ushakov, V.L.; Alipov, E.A.; , et al. Pecularities of non-thermal effects of microwaves in the frequency range of 51-52 GHz on E. coli cells (in Russian). Biofizika, submitted 2005. [CSA]
  • Alipov, Y.D.; Belyaev, I.Y.; , et al. Experimental justification for generality of resonant response of prokaryotic and eukaryotic cells to MM waves of super-low intensity. Physics of the Alive 1993, 1, 72–80. [CSA]
  • Byus, C.V.; Kartun, K.; , et al. Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res. 1988, 48, 4222–4226. [PUBMED], [INFOTRIEVE], [CSA]
  • Byus, C.V.; Lundak, R.L.; , et al. Alterations in protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Bioelectromagnetics 1984, 5, 341–351. [PUBMED], [INFOTRIEVE], [CSA]
  • d'Ambrosio, G.; Massa, R.; , et al. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics 2002, 23, 7–13. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Gapeev, A.B.; Iakushina, V.S.; , et al. Modulated extremely high frequency electromagnetic radiation of low intensity activates or inhibits respiratory burst in neutrophils depending on modulation frequency (in Russian). Biofizika 1997, 42, 1125–1134. [PUBMED], [INFOTRIEVE], [CSA]
  • Huber, R.; Treyer, V.; , et al. Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res. 2002, 11, 289–295. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Huber, R.; Treyer, V.; , et al. Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur. J. Neurosci. 2005, 21, 1000–1006. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Litovitz, T.A.; Penafiel, L.M.; , et al. Bioeffects induced by exposure to microwaves are mitigated by superposition of ELF noise. Bioelectromagnetics 1997, 18, 422–430. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Markkanen, A.; Penttinen, P.; , et al. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells. Bioelectromagnetics 2004, 25, 127–133. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Penafiel, L.M.; Litovitz, T.; , et al. Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics 1997, 18, 132–141. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Persson, B.R.R.; Salford, L.G.; Brun, A. Blood-Brain Barrier permeability in rats exposed to electromagnetic fields used in wireless communication. Wireless Networks 1997, 3, 455–461. [CSA], [CROSSREF]
  • Veyret, B.; Bouthet, C.; , et al. Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation. Bioelectromagnetics 1991, 12, 47–56. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Alipov, E.D. Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochim. Biophys. Acta. 2001, 1526, 269–276. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y.; Alipov, E.D.; Harms-Ringdahl, M. Effects of weak ELF on E. coli cells and human lymphocytes: role of genetic, physiological and physical parameters. In Electricity and Magnetism in Biology and Medicine; Bersani, F., Ed.; Kluwer Academic: NY, 1999a; 481–484.
  • Binhi, V.N.; Alipov, Y.D.; Belyaev, I.Y. Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes Bioelectromagnetics 2001, 22, 79–86. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Chiabrera, A.; Bianco, B.; , et al. Quantum dynamics of ions in molecular crevices under electromagnetic exposure. In Electromagnetics in Medicine and Biology; Pollack, S.R., Ed.; San Francisco Press: San Francisco, 1991; 21–26.
  • Chiabrera, A.; Bianco, B.; , et al. Zeeman-Stark modeling of the RF EMF interaction with ligand binding. Bioelectromagnetics 2000, 21, 312–324. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Matronchik, A.I.; Alipov, E.D.; Beliaev, I.I. A model of phase modulation of high frequency nucleoid oscillations in reactions of E. coli cells to weak static and low-frequency magnetic fields (in Russian). Biofizika 1996, 41, 642–649. [PUBMED], [INFOTRIEVE], [CSA]
  • Matronchik, A.Y.; Belyaev, I.Y. Model of slow nonuniform rotation of the charged DNA domain for effects of microwaves, static and alternating magnetic fields on conformation of nucleoid in living cells. In Fröhlich Centenary International Symposium Coherence and Electromagnetic Fields in Biological Systems (CEFBIOS-2005); Pokorny, J., Ed.; Institute of Radio Engineering and Electronics, Academy of Sciences of the Czech Republic: Prague, Czech Republic, 2005; 63–64.
  • Di Carlo, A.; White, N.; , et al. Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J. Cell Biochem. 2002, 84, 447–454. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Gos, P.; Eicher, B.; , et al. Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics 1997, 18, 142–155. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Alipov, E.D.; Shcheglov, V.S.; , et al. Cell-density dependent effects of low-dose ionizing radiation on E. coli cells. Radiats. Biol. Radioecol. 2003, 43, 167–171. [PUBMED], [INFOTRIEVE], [CSA]
  • Belyaev, I.Y. Biological effects of low dose ionizing radiation and weak electromagnetic fields. In 7th Workshop on Microdosimetry; Andreev, S.G., Ed.; MIFI: Suzdal, 1993; 128–146.
  • Belyaev, I.Y.; Alipov, Y.D.; Matronchik, A.Y. Cell density dependent response of E. coli cells to weak ELF magnetic fields. Bioelectromagnetics 1998, 19, 300–309. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Belyaev, I.Y.; Alipov, Y.D.; , et al. Cooperativity in E. coli cell response to resonance effect of weak extremely low frequency electromagnetic field. Bioelectrochem. Bioenerg. 1995, 37, 85–90. [CSA], [CROSSREF]
  • Fröhlich, H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 2, 641–652. [CSA], [CROSSREF]
  • Golant, M.B.; Kuznetsov, A.P.; Bozhanova, T.P. The mechanism of synchronizing yeast cell cultures with EHF-radiation (in Russian). Biofizika 1994, 39, 490–495. [PUBMED], [INFOTRIEVE], [CSA]
  • Lukashevsky, K.V.; Belyaev, I.Y. Switching of prophage lambda genes in Escherichia coli by millimeter waves. Medical Science Research 1990, I8, 955–957. [CSA]
  • Stagg, R.B.; Thomas, W.J.; , et al. DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field. Bioelectromagnetics 1997, 18, 230–236. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Repacholi, M.H.; Basten, A.; , et al. Lymphomas in E mu-Pim1 transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat. Res. 1997, 147, 631–640. [PUBMED], [INFOTRIEVE], [CSA]
  • Czyz, J.; Guan, K.; , et al. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 2004, 25, 296–307. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Panagopoulos, D.J.; Karabarbounis, A.; Margaritis, L.H. Effect of GSM 900-MHz Mobile Phone Radiation on the Reproductive Capacity of Drosophila melanogaster. Electromagnetic Biology and Medicine 2004, 23, 29–43. [CSA], [CROSSREF]
  • Papageorgiou, C.C.; Nanou, E.D.; , et al. Gender related differences on the EEG during a simulated mobile phone signal. Neuroreport 2004, 15, 2557–2560. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Smythe, J.W.; Costall, B. Mobile phone use facilitates memory in male, but not female, subjects. Neuroreport 2003, 14, 243–246. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zotti-Martelli, L.; Peccatori, M.; , et al. Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat Res. 2005, 582, 42–52. [PUBMED], [INFOTRIEVE], [CSA]
  • Lai, H.; Singh, N.P. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996, 69, 513–521. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Oktem, F.; Ozguner, F.; , et al. Oxidative Damage in the Kidney Induced by 900-MHz-Emitted Mobile Phone: Protection by Melatonin. Arch. Med. Res. 2005, 36, 350–355. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ozguner, F.; Aydin, G.; , et al. Prevention of mobile phone induced skin tissue changes by melatonin in rat: an experimental study. Toxicol. Ind. Health 2004, 20, 133–139. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ilhan, A.; Gurel, A.; , et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin. Chim. Acta. 2004, 340, 153–162. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Sevast'yanova, L.A. Nonthermal effects of millimeter radiation (in Russian). In Devyatkov, N.D., Ed.; Institute of Radioelctronics of USSR Academy of Science: Moscow, 1981; 86–109.
  • Arinichev, A.D.; Belyaev, I.Y.; , et al. The physical model of determining the electromagnetic characteristic frequencies of living cells by DNA structure. 2nd International Scientific Meeting “Microwaves in Medicine”. “La Sapienza” University of Rome: Rome, Italy, 1993; 305–307.
  • ICNIRP. ICNIRP Guidelines. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 1998, 74, 494–522. [CSA]
  • Hardell, L.; Mild, K.H. Mobile phone use and acoustic neuromas. Epidemiology 2005, 16, 415; author reply 417–418. [CSA], [CROSSREF]
  • Ahlbom, A.; Green, A.; , et al. Epidemiology of health effects of radiofrequency exposure. Environ. Health Perspect. 2004, 112, 1741–1754. [PUBMED], [INFOTRIEVE], [CSA]
  • Ozguner, M.; Koyu, A.; , et al. Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field. Saudi. Med. J. 2005, 26, 405–410. [PUBMED], [INFOTRIEVE], [CSA]
  • Kaiser, F. Coherent oscillations—their role in the interaction of weak ELM-fields with cellular systems. Neural Network World 1995, 5, 751–762. [CSA]
  • Scott, A. Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press: Oxford, 1999.
  • Lai, H.; Singh, N.P. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 1997, 18, 446–454. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Velizarov, S.; Raskmark, P.; Kwee, S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem. Bioenerg. 1999, 48, 177–180. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Schirmacher, A.; Winters, S.; , et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics 2000, 21, 338–345. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Harvey, C.; French, P.W. Effects on protein kinase C and gene expression in a human mast cell line, HMC-1, following microwave exposure. Cell Biol. Int. 2000, 23, 739–748. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Leszczynski, D.; Joenvaara, S.; , et al. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation 2002, 70, 120–129. [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Pacini, S.; Ruggiero, M.; , et al. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol. Res. 2002, 13, 19–24. [PUBMED], [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.