156
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Weak-field H3O+ ion cyclotron resonance alters water refractive index

, , , , , & show all
Pages 55-62 | Received 07 Jan 2016, Accepted 17 Apr 2016, Published online: 01 Jul 2016

References

  • Adair, R. K. (1991). Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A43:1039–1048.
  • Agmon, N. (1995). The Grotthuss mechanism. Chem. Phys. Lett. 244:456–462.
  • Alberto, D., Busso, I., Crotti, G., et al. (2008). Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solution. Electromagn. Biol. Med. 27:25–39.
  • Belova, N. A., Lednev, V. V. (2000). Dependence of gravitropic response in the segments of flax stems on the frequency and amplitude of weak combined magnetic fields. Biophysics 45:1075–1078.
  • Blackman, C. F., Benane, S. G., Rabinowitz, J. R., et al. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–337.
  • Blanchard, J. P., Blackman, C. F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238.
  • Bobkova, N. V., Novikov, V. V., Mevinskaya, N. I., Fesenko, E. E. (2005). Reduction in the -amyloid level in the brain under the action of weak combined magnetic fields in a model of Sporadic Alzheimer’s disease. Biophysics 540:52–57.
  • Bogatina, N. I., Sheykina, N. V. (2014). Role of hydronium ions in biological effects of weak combined magnetic fields. Phys Alive 21:43–45.
  • Comisso, N., Del Giudice, E., De Ninno, A., et al. (2006). Dynamics of the ion resonance effect on amino acids absorbed at the interfaces. Biioelectromagnetics 27:16–25.
  • D’Emilia, E., Giuliani, L., Lisi, A., et al. (2015). Lorentz force in water: Evidence that hydronium cyclotron resonance enhances polymorphism. Electromagn. Biol. Med. 34:370–375.
  • Diebert, M. C., McLeod, B. R., Smith, S. G., Liboff, A. R. (1994). Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J. Orthop. Res. 12:878–885.
  • Fitzsimmons, R. J., Ryaby, J. T., Mohan, S., et al. (1995). Combined magnetic fields increase insulin-like growth factor II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136:3100–3106.
  • Foletti, A., Grimaldi, S., Lisi, A., et al. (2013). Bioelectromagnetic medicine: The role of resonance signaling. Electromagn. Biol. Med. 32:484–499.
  • Gaetani, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic field. Cardiovasc. Res. 82:411–420.
  • Galland, P., Pazur, A. 2005. Magnetoreception in plants. J. Plant Res. 118:371–389.
  • Halle, B. (1988). On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bioelectromagnetics 9:381–385.
  • Jenrow, K. A., Smith, C., Liboff, A. R. (1995). Weak ELF fields and regeneration in the planarian Dugesia tigris. Bioelectromagnetics 16:106–112.
  • Ledda, M., Megiorni, F., Pozzi, D., et al. (2013). Non ionising radiation as a non chemical strategy in regenerative medicine: Ca2+-ICR “in vitro” effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. Plos One. doi: 10.1371/journal.pone.0061535
  • Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12(2):71–75.
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13:99–102.
  • Liboff, A. R. (2005). The charge-to-mass ICR signature in weak ELF bioelectromagnetic effects. In: Lin, J. C. Advances in Electromagnetic Fields in Living Systems, Vol. 4, pp. 189–218. New York, NY: Springer Science + Business Media, Inc.
  • Liboff, A. R. (2006). The ion cyclotron resonance hypothesis. In: Greenebaum, B., Barnes, F. Handbook of Bioelectromagnetism. 3rd edn. Boca Raton: CRC Press. Chap. 9, pp. 261–287
  • Lisi, A., Ledda, M., De Carlo, F., et al. (2008a). Ion cyclotron resonance as a tool in regenerative medicine. Electromagn. Biol. Med. 27:127–133.
  • Lisi, A., Ledda, M., De Carlo, F., et al. (2008b). Ion cyclotron resonance (ICR) transfers information to living systems: Effects on human epithelial cell differentiation. Electromagn. Biol. Med. 27:230–240.
  • Novikov, V. V., Fesenko, E. E. (2001). Hydrolysis of various peptides and proteins in weak permanent and low frequency fluctuating magnetic fields. Biophysics 46:235–241.
  • Novikov, V. V., Novikov, G. V., Fesenko, E. E. (2009). Effect of weak combined static and extremely low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics 30:343–351.
  • Pazur, A. (2004). Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn. Res. Technol. 2:8. doi: 10.1186/1477-04x-2-8.
  • Prato, F. S., Kavaliers, M., Thomas, A. W. (2000). Extremely low frequency magnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21:287–301.
  • Rozek, R. J., Sherman, M. L., Liboff, A. R., et al. (1987). Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes. Cell Calcium 8:413–427.
  • Sandweiss, J. (2005). On the cyclotron resonance model of ion transport. Bioelectromagnetics 11:203–205.
  • Sarimov, R., Markova, E., Johansson, F., et al. (2005). Exposure to ELF magnetic field tuned to Zinc inhibits growth of cancer cells. Bioelectromagnetics 26:631–638.
  • Smith, S. D., McLeod, B. R., Liboff, A. R., Cooksey, K. (1987). Calcium cyclotron resonance and diatom motility. Bioeletromagnetics 8:215–227.
  • Swanson, J., Kheifets, L. (2006). Biophysical mechanisms: A component in the weight of evidence for health effects of power-frequency electric and magnetic fields. Rad. Res. 165:470–478.
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349–357.
  • Vincze, G., Szasz, A., Liboff, A. R. (2008). New theoretical treatment of ion resonance phenomena. Bioelectromagnetics 29:380–386.
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998a). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solutions. Bioelectromagnetics 19:41–45.
  • Zhadin, M. N. (1998b). Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics 19:279–292.
  • Zhadin, M. N., Fesenko, E. E. (1990). Ionic cyclotron resonance in biomolecules. Biomed. Sci. 1:245–250.
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20:378–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.