329
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Magnetic fields, radicals and cellular activity

Pages 102-113 | Received 30 Aug 2015, Accepted 01 May 2016, Published online: 11 Jul 2016

References

  • Barnes, F., Greenebaum, B. (2015). The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54.
  • Bovey, F. A., Jelinski, L., Mirau, P. A. (1988). Nuclear Magnetic Resonance Spectroscopy. San Diego: Academic Press, Inc. p. 653.
  • Brocklehurst, B., McLauchlan, K. A. (1996). Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int. J. Radiat. Bio. 69:3–24.
  • Buchachenko, A. L., Kuznetsov, D. A. (2008). Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 130:12868–12869.
  • Burdon, R. H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol. Med. 18:775–794.
  • Cai, J., Caruso, F., Plenio, M. (2012). Quantum limits for the magnetic sensitivity of a chemical compass. Phys. Rev. A. 85:040304(R).
  • Castello, P. R., Hill, I., Sivo, F., et al. (2014). Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields. Bioelectromagnetics 35:598–602.
  • Céspedes, O., Ueno, S. (2009). Effects of radio frequency magnetic fields on iron release from cage proteins. Bioelectromagnetics 30:336–342.
  • Chang, K.-T., Weng, C.-I. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 100:043917.
  • Chaplin, M. (2006). Do we underestimate the importance of water in cell biology? Nature Rev. Mol. Cell Biol. 7:861–866.
  • Chilton, L., Ohya, S., Freed, D., et al. (2005). K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 288:H2931–H2939.
  • Collins, K. D. (1997). Charge density-dependent strength of hydration and biological structure. Biophysics 72:65–76.
  • Crotty, D., Silkstone, G., Poddar, S., et al. (2012). Correction to Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. PNAS 109:1437–1442.
  • Dean, R. T. (1987). Free radicals, membrane damage and cell-mediated cytolysis. Br. J. Cancer 55:39–45.
  • Dodson, C. A., Hore, P. J., Wallace, M. I. (2013). A radical sense of direction: Signaling and mechanism in cryptochrome magnetoreception. Trends Biochem. Sci. 38:435–446.
  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82:47–95.
  • Fossey, J., Lefort, D., Sorba, J. (1995). Free Radicals in Organic Chemistry. New York: Wiley.
  • Grissom, C. B. (1995). Magnetic field effects in biology: A survey of possible mechanisms with emphasis on radical pair recombination. Chem. Rev. 95:3–24.
  • Gutierrez, J., Ballinger, S. W., Darley-Usmar, V. M., Landar, A. (2006). Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circ. Res. 99:924–932.
  • Hamanaka, R. B., Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35:505–513.
  • Kourie, J. I. (1998). Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiology-Cell Physiol. 275:C1–C24.
  • Lander, H. M. (1997). An essential role for free radicals and derived species in signal transduction. FASEB J. 11:118–124.
  • Martino, C. F., Portelli, L., McCabe, D., et al. (2010). Reduction of the Earth’s magnetic field inhibits growth rates of model cancer cell lines. Bioelectromagnetics 31:649–655.
  • Messiha, H. L., Wongnate, T., Chaiyen, P., et al. (2015). Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. J. R. Soc. Interface 12:20141155.
  • Murrell, G. A. C., Francis, M. J. O., Bromley, L. (1990). Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J. 265:659–665.
  • Park, J., Lee, J., Choi, C. (2011). Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS ONE 6:e23211.
  • Pilla, A. A., Muehsam, D. J., Markov, M. S. (1997). A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion binding and orientation of bound water molecules. Bioelectrochemistry and Bioenergetics 43:239–249.
  • Ray, P. D., Huang, B. W., Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signaling 24:981–990.
  • Richardson, D. R., Kalinowski, D. S., Lau, S., et al. (2006). Cancer cell iron metabolism and the development of potent iron chelators as anti-tumor agents. Biochimica et Biophysica Acta 1790:702–717.
  • Sanderson, T. H., Reynolds, C. A., Kumar, R. R., et al. (2013). Molecular mechanisms of ischemia-reperfusion injury in Brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol. Neurobiol. 47:9–23.
  • Sohn, Y. S., Tamir, S., Song, L., et al. (2013). NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. PNAS 110:14676–14681.
  • Usselman, R. J., Hill, I., Singel, D. J., Martino, C. F. (2014). Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS ONE 9:e93065.
  • Wolf, F., Torsello, A., Tedesco, B., et al. (2005). 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochimica et Biophysica Acta 1743:120–129.
  • Wolff, S. P., Dean, R. T. (1986). Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 234:399–403.
  • Wu, M.-L., Tsai, K.-L., Wang, S.-M., et al. (1996). Mechanism of hydrogen peroxide and hydroxyl free radical-induced intracellular acidification in cultured rat cardiac myoblasts. Circ. Res. 78:564–572.
  • Yang, M., Brackenbury, W. J. (2013). Membrane potential and cancer progression. Front. Physiol. 4:185.
  • Zmyslony, M., Rajkowska, E., Mamrot, P., et al. (2004). The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro. Bioelectromagnetics 25:607–612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.