510
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synergistic interactions between temporal coupling of complex light and magnetic pulses upon melanoma cell proliferation and planarian regeneration

, &
Pages 141-148 | Received 02 Mar 2016, Accepted 14 Jun 2016, Published online: 27 Jul 2016

References

  • Baker-Price L., Persinger M. A. (2003). Intermittent burst-firing weak (1 microTesla) magnetic fields reduce psychometric depression in patients who sustained closed head injuries: A replication and electroencephalographic validation. Perception Motor Skills 96:965–974.
  • Bokkon, I., Salari, V., Tuszynski, J. A., Antal, I. (2010). Estimated numbers of biophotons involved in the visual perception of a single-object image: Biophoton intensity can be considerably higher inside cells than outside. J. Photochem. Photobiol. B, 100:160–166.
  • Blackshaw, S., Snyder, S. H. (1999). Encephalopsin: A Novel Mammalian Extraretinal Opsin Discretely Localized in the Brain. J. Neurosci. 19:3681–3690.
  • Buckner, C. A., Buckner, A. L., Koren, S. A., et al. (2015). Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS One 10:e0124136.
  • Choi, D. H, Lee, K. H., Moon, J. J., et al. (2012). Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult. Biochem. Biophys. Res. Commun. 422:274–279.
  • Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18:1213–1225.
  • Dotta, B. T., Buckner, C. A., Cameron, D., et al. (2011a). Biophoton emissions from cell cultures: Biochemical evidence for the plasma membrane as the primary source. Gen. Physiol. Biophys. 30:301–309.
  • Dotta, B. T., Murugan, N. J., Karbowski, L. M., et al. (2014). Shifting the wavelengths of ultraweak photon emissions from dying melanoma cells: Their chemical enhancement and blocking are predicted by Cosic’s theory of resonant recognition model for macromolecules. Naturwissenschaften 101:87–94.
  • Eells, J. T., Wong-Riley, M. T. T., VerHoeve, J., et al. (2004). Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 4:559–567.
  • Fels, D. (2009). Cellular communication through light. PloS One 4 (4): e5086.
  • Figueiro M. G., Rea M. S. (2010). The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int. J. Endocrinol. 2010:829351.
  • Fleming, J. L., Persinger, M. A., Koren, S. A. (1994). One second per four second magnetic pulses elevates nociceptive thresholds: Comparisons with opiate 30 receptor compounds in normal and seizure-induced brain damaged rats. Electro Magnetobiol. 13:67–75.
  • Horne, J. A., Donlon, J., Arendt, J. (1991). Green light attenuates melatonin output and sleepiness during sleep deprivation. Sleep 14:233–240.
  • Karbowski, L. M., Harribance, S. L., Buckner, C. A., et al. (2012). Digitized quantitative electroencephalographic patterns applied as magnetic fields inhibit melanoma cell proliferation in culture. Neurosci. Lett. 523:131–134.
  • Karbowski, L. M., Murugan, N. J., Koren, S. A., Persinger, M. A. (2015). Seeking the source of transience for a unique magnetic field pattern that completely dissolves cancer cells in vitro. J. Biomed. Sci. Eng. 8:531.
  • Karbowski, L. M., Murugan, Persinger, N. J., Karbowski, M. A. (2016). Experimental evidence that specific photon energies are “stored” in malignant cells for an hour: The synergism of weak magnetic field-LED wavelength pulses. Biol. Med. 8:1.
  • Kavaliers, M., Ossenkopp, K.-P. (1991). Opioid systems and magnetic field effects in the land snail, Cepaeanemoralis. Biol. Bull. 180:301–309.
  • Martin, L. J., Koren, S. A., Persinger, M. A. (2004). Thermal analgesic effects from weak, complex magnetic fields and pharmacological interactions. Pharmacol. Biochem. Behav. 78:217–227.
  • Masoumipoor, M., Behnam Jameie, S., Janzadeh, A., et al. (2013). Effects of 660 nm low level laser therapy on neuropathic pain relief following chronic constriction injury in rat sciatic nerve. Arch. Neurosci. 1:76–81.
  • Mitsunaga, M., Ogawa, M., Kosaka, N., et al. (2011). Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17:1685–1691.
  • Murugan, N. J., Persinger, M. A. (2014). Comparisons of responses by planarian to micromolar to attomolar dosages of morphine or naloxone and/or weak pulsed magnetic fields: revealing receptor subtype affinities and non-specific effects. International J. Radiat. Biol. 90:833–840.
  • Murugan, N. J., Karbowski, L. M., Mekers, W. F. T., Persinger, M. A (2015). Group planarian sudden mortality: Is the threshold around global geomagnetic activity ≥K6? Commun. Integrative Biol. 8 (6): e1095413.
  • Olcese J., Reuss, S. (1986). Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rodents. Brain Res. 369:365–368.
  • Oparin, A. I. (1965). The Origins of Life. New York: Dover Publications.
  • Persinger, M. A., Lafrenie, R. M. (2014). The cancer cell plasma membrane potentials as energetic equivalents to astrophysical properties. Int. Lett. Chem. Phys. Astron. 17:66–77.
  • Persinger, M. A. (2016). The biomass of the earth as the direct energy-mass equivalence from ≈3.5 billions of years of solar flux (in submission).
  • Popp, F.-A. (1979). Photon storage in biological systems. In: Popp F. A., Becker G., Konig H. L., Pescha W., (eds.), Electromagnetic Bioinformation. Munich: Urban and Schwarzenberg. pp. 123–149.
  • Tessaro, L. Persinger, M. A. (2013). Optimal durations for single exposures to a frequency-modulated magnetic field immediately after bisection in planarian predict final growth values. Bioelectromagnetics. 34(8):613–617.
  • Trushin, M. V. (2004). Light-mediated “conversation” among microorganisms. Microbiol. Res. 159:1–10
  • Van Wijk, R., Schamhart, D. H. J. (1988). Regulatory effects of low intensity photon emission. Experientia 44:586–593.
  • Wu, H.-P., Persinger, M. A. (2011). Increased mobility and stem-cell proliferation rate in Dugesia tigrina induced by 880 nm light emitting diode. J. Photochem. Photobiol. B 102:156–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.