596
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Review: Weak radiofrequency radiation exposure from mobile phone radiation on plants

Pages 213-235 | Received 06 May 2016, Accepted 01 Aug 2016, Published online: 20 Sep 2016

References

  • Akbal, A., Kiran, Y., Sahin, A. (2012a). Effects of electromagnetic waves emitted by mobile phones on germination, root growth, and root tip cell mitotic division of lens culinaris medik. Pol. J. Environ. Stud. 21:23–29.
  • Akbal, A., Kiran, Y., Sahin, A., et al. (2012b). Effects of electromagnetic waves emitted by mobile phones on germination, root growth, and root tip cell mitotic division of lens culinaris medik. Pol. J. Environ. Stud. 21:23–29.
  • Arnetz, B. B., Akerstedt, T., Hillert, L., et al. (2007). The effects of 884 MHz GSM wireless communication signals on self-reported symptom and sleep (EEG) – An experimental provocation study. PIERS Online 3:1148–1150.
  • Balmori, A. (2004). pueden afectar las microondas pulsadas emitidas por las antenas de telefonía a los árboles y otros vegetales? Ecosistemas 13:79–87.
  • Balmori, A. (2014). Electrosmog and species conservationm. Sci. Total Environ. 496:314–316.
  • Balodis, V. G., Brumelis, K., Kalviskis, O., et al. (1996). Does the skrundra radio location station diminish the radial growth of pine trees? Sci. Total Environ. 180:57–64.
  • Beaubois, E., Girard, S., Lallechere, S., et al. (2007). Intercellular communication in plants: Evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant Cell Environ. 30:834–844.
  • Belyavskaya, N. A. (2004). Biological effects due to weak magnetic field on plants. Adv. Space Res. 34:1566–1574.
  • Benson, V. S., Pirie, K., Schüz, J., et al. (2013). Mobile phone use and risk of brain neoplasms and other cancers: Prospective study. Int. J. Epidemiol. 42:792–802.
  • Bolen, S. M. (1988). Radiofrequency/microwave radiation biological effects and safety standards: A review. Rome Laboratory. Air Force Material Command. Tech. Rep. New York, NY: Griffiss Air Force Base.
  • Braam, J., Davis, R. (1990). Rain wind and touched expression of camodulin-related genes in arabidopsis. Cell 60:359–364.
  • Braam, J., Sistrunk, M., Polisensky, D. (1996). Life in a changing world: TCH gene regulation of expression and responses to environmental signals. Physiol. Plant 98:909–916.
  • Cammaerts, M., Claire, M., Johansson, O. (2015). Effect of man-made electromagnetic fields on common brassicaceae lepidium sativum (cress d’alinois) seed germination: A preliminary replication study. Phyton 84:132–137.
  • CENELEC (1995). Human Exposure to Electromagnetic Fields, Field Frequency: 10 kHz-300 GHz. European Pre-Standard (prENV 50166-2). Brussels: CENELEC.
  • Chen, Y. C., Chen, C. (2014). Effects of mobile phone radiation on germination and early growth of different bean species. Pol. J. Environ. Stud. 23:1949–1958.
  • Chen, Y. P., Liu, Y. J., Wang, X. L., et al. (2005). Effect of microwave and he-ne laser on enzyme activity and biophoton emission of Isatis indigotica Fort. J. Integr. Plant Biol. 47:849–855.
  • Chen, Y. P., Jia, J. F., Wan, Y. J. (2009). Weak microwave can enhance tolerance of wheat seedlings to salt stress. J. Plant Growth Regul. 28:381–385.
  • Choi, J. (2012). Key global telecom indicators for the world telecommunication service sector. Geneva, Switzerland: International Telecommunication Union (ITU).
  • Cleary, S., Cao, G., Liu, L., et al. (1997). Stress proteins are not induced in mammalian cells exposed to radiofrequency or microwave radiation. Bioelectromagnetics 18:499–505.
  • Cleary, S. F. (1995). Effects of Radio-Frequency Radiation on Mammalian Cells and Biomolecules In Vitro. Ser. Advances in Chemistry. Washington, D.C.: American Chemical Society. Vol. 250, ch. 26, pp. 467–477.
  • Cucurachi, S., Tamis, W. L., Vijver, M. G., et al. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ. Int. 51:116–140.
  • d’Ambrosio, G., Lioi, M. B., Massa, R., Zeni, O. (1995). Genotoxic effects of amplitude modulated microwaves on human lymphocytes exposed in vitro under controlled conditions. Electro. Magnetobiol. 14:157–164.
  • Danker-Hopfe, H., Dorn, H., Bornkessel, C., Sauter, C. (2010). Do mobile phone base stations affect sleep of residents? Results from an experimental double-blind sham-controlled field study. Am. J. Hum. Biol. 22:613–618.
  • Danker-Hopfe, H., Dorn, H., Bolz, T., et al. (2015). Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: An intra- and inter-individual perspective. Environ. Res. 145:50–60.
  • Dragolova, D., Dimitrova, M., Kouzmanova, M. (2009). Does 900 MHz electromagnetic field induce oxidative stress in wheat plants? New Research in Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania.
  • Eberhardt, J. L., Persson, B., Brun, A. E., et al. (2008). Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn. Biol. Med. 27:215–229.
  • Elliott, P., Toledano, M. B., Bennett, J., et al. (2010). Mobile phone base stations and early childhood cancers: Case-control study. Br. Med. J. 22:1–7.
  • Engelmann, J. C., Deeken, R., Müller, T., et al. (2008). Is gene activity in plant cells affected by UMTS-irradiation? A whole genome approach. Comput. Biol. Chem.: Adv. Appl. 1:71–83.
  • European health risk assessment network (2010). Risk analysis of human exposure to electromagnetic fields. European health risk assessment network (EHFRAN), EU Commission EFHRAN Report. Tech. Rep. Milan, Italy: European Health Risk Assessment Network on Electromagnetic Fields Exposure.
  • Finnie, J. W., Blumbergs, P. C., Cai, Z., Manavis, J. (2009). Expression of the water channel protein, aquaporin-4, in mouse brains exposed to mobile telephone radiofrequency fields. Pathology 41:473–475.
  • Gannes, F. P., Billaudel, B., Taxile, M., et al. (2009). Effects of head-only exposure of rats to GSM-900 on blood-brain barrier permeability and neuronal degeneration. Radiat. Res. 172:359–367.
  • Gremiaux, A., Girard, S., Guerin, V., et al. (2016). Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in rosa hybrida. J. Plant Physiol. 190:44–53.
  • Gustavino, B., Carboni, G., Petrillo, R., et al. (2016). Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis 31:187–192.
  • Haggerty, K. (2010). Adverse influence of radio frequency background on trembling aspen seedlings: Preliminary observations. Int. J. For. Res. 171:1–7.
  • Haider, T., Knasmueller, S., Kundi, M., Haider, M. (1994). Clastogenic effects of radiofrequency radiations on chromosomes of Tradescantia. Mutat. Res. 324:65–68.
  • Halgamuge, M. N., Skafidas, E. (2016). A meta-analysis of data from 300 publications of 1127 in vitro exposures (1990–2015): Weak radiofrequency radiation exposure from mobile phones. Electromagnetic Biology and Medicine, in press.
  • Halgamuge, M. N., Yak, S. K., Eberhardt, J. L. (2015). Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics 36:87–95.
  • Halgamuge, M. N. (2013). Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits. Radiat. Prot. Dosim. 154:405–416.
  • Halgamuge, M. N. (2013). Critical time delay of the pineal melatonin rhythm in humans. Indian J. Biochem. Biophys. 50:259–265.
  • Hardell, L., Eriksson, M., Carlberg, M., et al. (2005). Use of cellular or cordless telephones and the risk for non-Hodgkin’s lymphoma. Int. Arch. Occup. Environ. Health 78:625–632.
  • Hardell, L., Carlberg, M., Mild, K. H. (2006). Pooled analysis of two case-control studies on use of cellular and cordless telephones and the risk for malignant brain tumours diagnosed in 1997–2003. Int. Arch. Occup. Environ. Health 79:630–639.
  • Hardell, L., Carlberg, M., Hansson, K. (2009). Epidemiological evidence for an association between use of wireless phones and tumor diseases. Pathophysiology 16:113–122.
  • Hirota, S., Matsuura, M., Masuda, H., et al. (2009). Direct observation of microcirculatory parameters in rat brain after local exposure to radio-frequency electromagnetic field. Environmentalist 29:186–189.
  • Hook, G. J., Zhang, P., LaGroye, I., et al. (2004). Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiat. Res. 161:193–200.
  • Hyland, G. (2005). How exposure to mobile phone base-station signals can adversely affect humans. Available from: http://www.tetrawatch.net/papers/hyland-2005.pdf. (accessed April 2016)
  • IEEE C95.1-2005 (2005). IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 khz to 300 GHz. Tech. Rep. Piscataway, NJ: Institute of Electrical and Electronics Engineers.
  • International Commission on Non-Ionizing Radiation Protection (1998). ICNIRP (international commission on non-ionizing radiation protection), guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • International Telecommunication Union, Geneva, Switzerland (2012). Measuring the information society. Geneva, Switzerland: ITU.
  • INTERPHONE Study Group (2010). Brain tumour risk in relation to mobile telephone use: Results of the interphone international case-control study. Int. J. Epidemiol. 39:675–694.
  • Jinapang, P., Prakob, P., Wongwattananard, P., et al. (2010). Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields. Bioelectromagnetics 31:519–527.
  • Johansen, C., Boice, J. D., McLaughlin, J., Olsen, J. (2001). Cellular telephones and cancer – A nationwide cohort study in Denmark. J. Natl. Cancer Inst. 93:203–207.
  • Kazemi, E., Mortazavi, S. M. J., Ali-Ghanbari, A., et al. (2015). Effect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cells. J. Biomed. Phys. Eng. 5:105–114.
  • Khalafallah, A., Sallam, S. (2009). Response of maize seedlings to microwaves at 945 MHz. Rom. J. Biophys. 19:49–62.
  • Kim, D. H., Kim, H. J., Gimm, Y. M., et al. (2015). Effects of a continuous electromagnetic field on wound healing in human airway. Laryngoscope 125:1588–1594.
  • Komatsubara, Y., Hirose, H., Sakurai, T., et al. (2005). Effect of high-frequency electromagnetic fields with a wide range of SARs on chromosomal aberrations in murine m5S cells. Mutat. Res. 587:114–119.
  • Kouzmanova, M., Dimitrova, M., Dragolova, D., et al. (2009). Alterations in enzyme activities in leaves after exposure of Plectranthus sp. plants to 900 MHz electromagnetic field. Biotechnol. Biotechnol. 23:611–615.
  • Kouzmanova, M., Gurmanova, M., Tincheva, S., et al. (2010). Effects of GSM 900 electromagnetic fields on some parameters of chlorophyll fluorescence in crop plants wheat, maize and peas. Agrarni. Nauki. 2:101–108.
  • Koyama, S., Nakahara, T., Wake, K., et al. (2003). Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat. Res. 541:81–89.
  • Koyama, S., Isozumi, Y., Suzuki, Y., et al. (2004). Effects of 2.45-GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. Sci. World J. 4:29–40.
  • Koyama, S., Narita, E., Suzuki, Y., et al. (2015). Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. J. Radiat. Res. 56:30–36.
  • Kumar, A., Singh, H. P., Batish, D. R., et al. (2015). EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma. 253:1043–1049
  • Lai, P. Y., Wong, K. L. (2008). Capacitively FED hybrid monopole/slot chip antenna for 2.5/3.5/5.5 GHz WiMAX operation in the mobile phone. Microw. Opt. Technol. Lett. 50:2689–2694.
  • Leitgeb, N., Schröttner, J., Cech, R., Kerbl, R. (2008). EMF-protection sleep study near mobile phone base stations. Somnology 12:234–243.
  • Lerchl, D., Lerchl, A., Hantsch, P., et al. (1999). Studies on the effects of radio-frequency fields on conifers. Trans. Bioelectromagnetics 22:160
  • Li, C. Y., Liu, C. C., Chang, Y. H., et al. (2012). A population-based case-control study of radiofrequency exposure in relation to childhood neoplasm. Sci. Total Environ. 435:472–478.
  • Linet, M. S., Taggart, T., Severson, R., et al. (2006). Cellular telephones and non-hodgkin lymphoma. Int. J. Cancer 119:2382–2388.
  • Liu, Y. X., Li, G. Q., Fu, X. P., et al. (2015). Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells. BMC Public Health 15:1–12.
  • Lloyd, D. C., Saunders, R. D., Finnon, P., Kowalczuk, C. I. (1984). No clastogenic effect from in vitro microwave irradiation of G0 lymphocytes. Int. J. Radiat. Biol. 46:135–141.
  • Lloyd, D. C., Saunders, R. D., Moquet, J. E., Kowalczuk, C. I. (1986). Absence of chromosomal damage in human lymphocytes exposed to microwave radiation with hyperthermia. Bioelectromagnetics 7:235–237.
  • Loughran, S. P., McKenzie, R. J., Jackson, M. L., et al. (2012). Individual differences in the effects of mobile phone exposure on human sleep: Rethinking the problem. Bioelectromagnetics 33:86–93.
  • Lowden, A., Akerstedt, T., Ingre, M., et al. (2011). Sleep after mobile phone exposure in subjects with mobile phone-related symptoms. Bioelectromagnetics 32:4–14.
  • Maes, A., Verschaeve, L., Arroyo, A., et al. (1993). In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics 14:495–501.
  • Magone, I. (2007). The effect of electromagnetic radiation from the skrunda radio location station on Spirodela polyrhiza (l.) schleiden cultures. Sci. Total Environ. 180:75–80.
  • Mary, M., Braam, J. (1997). The Arabidopsis TCH4 xyloglucan endotransglyco-sylase. Plant Physiol. 115:181–190.
  • Masuda, H., Ushiyama, A., Takahashi, M., et al. (2009). Effects of 915 MHz electromagnetic-field radiation in TEM cell on the blood brain barrier and neurons in the rat brain. Radiat. Res. 172:66–73.
  • Monselise, E. B., Levkovitz, A., Gottlieb, H. E., Kost, D. (2011). Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas. J. Environ. Monit. 13:1890–1896.
  • Murakami, H., Komiyama, K., Kudo, I. (2001). Recent progress in long-duration microwave exposure. 52nd International Astronautical Congress, Toulouse, France.
  • Nicotra, A., Atkin, O., Bonser, S., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15:684–692.
  • Nittby, H., Brun, A., Strömblad, S., et al. (2011). Nonthermal GSM RF and ELF EMF effects upon rat BBB permeability. Environmentalist 31:140–148.
  • Oluwajobi, A. O., Falusi, O. A., Zubbair, N. A. (2015). Flower bud abscission reduced in Hibiscus sabdariffa by radiation from GSM mast. Environ. Pollut. 4:53–58.
  • Panagopoulos, D. J., Cammaerts, M., Favre, D., Balmori, A. (2016). Comments on environmental impact of radiofrequency fields from mobile phone base stations. Crit. Rev. Environ. Sci. Technol. 46:885–903..
  • Parker, J. E., Kiel, J. L., Winters, W. D. (1988). Effect of radiofrequency radiation of mRNA expression in cultured rodent cells. Physiol. Chem. Phys. Med. NMR 20:129–134.
  • Pesnya, D. S., Romanovsky, A. V. (2013). Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 750:27–33.
  • Picazo, M., Martinez, E., Carbonell, M., et al. (1999). Inhibition in the growth of thistles (Cynara cardunculus L.) and lentils (Lens culinaris L.) due to chronic exposure to 50-Hz 15-uT electromagnetic fields. Electro- Magnetobiol. 18:147–156.
  • Racuciu, M., Miclaus, S. (2007). Low-level 900 MHz electromagnetic field influence on vegetal tissue. Rom. J. Biophys. 17:149–156.
  • Racuciu, M., Iftode, C., Miclaus, S. (2015). Inhibitory effects of low thermal radiofrequency radiation on physiological parameters of zeamays seedlings growth. Rom. J. Phys. 60:603–612.
  • Radic, S., Cvjetko, P., Malaric, K., et al. (2007). Radio frequency electromagnetic field (900MHz) induces oxidative damage to DNA and biomembrane in tobacco shoot cells (Nicotiana tabacum). IEEE/MTT-S International Microwave Symposium. Honolulu, HI: IEEE. pp. 2213–2216.
  • Ragha, L., Mishra, S., Ramachandran, V., Bhatia, M. S. (2011). Effects of low-power microwave fields on seed germination and growth rate. J. Electromagn. Anal. Appl. 3:165–171.
  • Rammal, M., Jebai, F., Rammal, H., Joumaa, W. H. (2014). Effects of long term exposure to RF/MW radiations on the expression of mRNA of stress proteins in Lycopersicon esculentum. Trans. Biol. Biomed. 11:10–14.
  • Rao, V. S., Titushkin, I. A., Moros, E. G., et al. (2008). Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: Elucidation of calcium pathways. Radiat. Res. 169:319–329.
  • Regel, S. J., Tinguely, G., Schuderer, J., et al. (2007). Pulsed radio-frequency electromagnetic fields: Dose-dependent effects on sleep, the sleep EEG and cognitive performance. J. Sleep Res. 16:253–258.
  • Roux, D., Vian, A., Girard, S., et al. (2006). Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiol. Plant 128:283–288.
  • Roux, D., Vian, A., Girard, S., et al. (2007). High frequency (900 MHz) low amplitude (5Vm-1) electromagnetic field: A genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 227:883–891.
  • Roux, D., Vian, A., Girard, S., et al. (2008a). High frequency (900 MHz) low amplitude (5 V/m) electromagnetic field: A genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 227:883–891.
  • Roux, D., Faure, C., Bonnet, P., et al. (2008b). A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signal. Behav. 3:383–385.
  • Ruzic, R., Jerman, L. (2000). Weak magnetic field decreases heat stress in cress seedlings. Electromagn. Biol. Med. 21:69–80.
  • Sandu, D. D., Goiceanu, C., Ispas, A., et al. (2005). A preliminary study on ultra high frequency electromagnetic fields effect on black locust chlorophylls. Acta Biol. Hung. 56:109–117.
  • SCENIHR (2015). Potential health effects of exposure to electromagnetic fields (EMF). SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks. Tech. Rep. Luxembourg: European Commission.
  • Schüz, J., Jacobsen, R., Olsen, J., et al. (2006). Cellular telephone use and cancer risk: Update of a nationwide Danish cohort. J. Natl. Cancer Inst. 98:1707–1713.
  • Schmutz, P., Siegenthaler, J., Stager, C., et al. (1996). Long-term exposure of young spruce and beech trees to 2450-MHz microwave radiation. Sci. Total Environ. 180:43–48.
  • Scialabba, A., Tamburello, C. (2002). Microwave effects on germination and growth of radish (Raphanus sativus L.) seedlings. Acta Bot. Gall. 149:113–123.
  • Selga, T., Selga, M. (1996). Response of Pinus sylvestris L. Needles to electromagnetic fields: Cytological and ultra-structural aspects. Sci. Total Environ. 180:65–73.
  • Senavirathna, M., Asaeda, T. (2014). Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. Biol. Plant 58:355–362.
  • Senavirathna, M. D., Takashi, A. (2014). The significance of microwaves in the environment and its effect on plants. Environ. Rev. 22:220–228.
  • Senavirathna, M. D., Asaeda, T., Thilakarathne, B. L., Kadono, H. (2014a). Nanometer-scale elongation rate fluctuations in the Myriophyllum aquaticum (parrot feather) stem were altered by radio-frequency electromagnetic radiation. Plant Signal. Behav. 9: e28590.
  • Senavirathna, M. D., Takashi, A., Kimura, Y. (2014b). Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor). Electromagn. Biol. Med. 33:327–334.
  • Sharma, S., Parihar, L. (2014). Effect of mobile phone radiation on nodule formation in the leguminous plants. Curr. World Environ. J. 9:145–155.
  • Sharma, V. P., Singh, H. P., Kohli, R. K., Batish, D. R. (2009a). Mobile phone radiation inhibits vigna radiata (mung bean) root growth by inducing oxidative stress. Sci. Total Environ. 407:5543–5547.
  • Sharma, V. P., Singh, H. P., Kohli, R. K. (2009b). Effect of mobile phone EMF on biochemical changes in emerging seedlings of Phaseolus aureus Roxb. Ecoscan 3:211–214.
  • Sharma, V. P., Singh, H. P., Batish, D. R., Kohli, R. K. (2010). Cell phone radiations affect early growth of vigna radiata (mung bean) through biochemical alterations. Z. Naturforsch. C 65:66–72.
  • Singh, H. P., Sharma, V. P., Batish, D. R., Kohli, R. K. (2012). Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ. Monit. Assess. 184:1813–1821.
  • Skiles, J. (2006). Plant response to microwaves at 2.45 GHz. Acta Astronaut. 58:258–263.
  • Soran, M. L., Stan, M., Niinemets, U., Copolovici, L. (2014). Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants. J. Plant Physiol. 171:1436–1443.
  • Sudan, M., Kheifets, L., Arah, O. A., Olsen, J. (2013a). Cell phone exposures and hearing loss in children in the Danish national birth cohort. Paediatric Perinatal Epidemiol. 27:247–257.
  • Sudan, M., Kheifets, L., Arah, O. A., Olsen, J. (2013b). On the association of cell phone exposure with childhood behaviour. J. Epidemiol. Community Health 1: 979.
  • Swerdlow, A. J., Feychting, M., Green, A. C., et al. (2011). Mobile phones, brain tumors, and the interphone study: Where are we now? Environ. Health Perspect. 119:1534–1538.
  • Tafforeau, M., Verdus, M. C., Norris, V., et al. (2002). SIMS study of the calcium deprivation step related to epidermal meristem production induced in flax by cold shock or radiation from a GSM telephone. J. Trace Microprobe Tech. 20:611–623.
  • Tafforeau, M., Verdus, M. C., Norris, V., et al. (2004). Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 25:403–407.
  • Takashima, Y., Hirose, H., Koyama, S., et al. (2006). Effects of continuous and intermittent exposure to rffields with a wide range of sars on cell growth, survival, and cell cycle distribution. Bioelectromagnetics 27:392–400.
  • Talei, D., Valdiani, A., Maziah, M., Mohsenkhah, M. (2013). Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. Sci. World J. 2013:1–7.
  • Tang, J., Zhang, Y., Yang, L., et al. (2015). Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood–brain barrier damage and cognitive impairment in rats. Brain Res. 19:92–101.
  • Tanner, J. A., Romero-Sierra, C. (1974). Beneficial and harmful growth induced by the action of nonionizing radiation. Ann. N. Y. Acad. Sci. 238:1–5.
  • Tian, F., Nakahara, T., Wake, K., et al. (2002). Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5 w/kg in human glioma MO54 cells. Int. J. Radiat. Biol. 78:433–440.
  • Tkalec, M., Malarić, K., Pevalek-Kozlina, B. (2005). Influence of 400, 900 and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics 26:185–93.
  • Tkalec, M., Malari, K., Pevalek-Kozlina, B. (2007). Exposure to radiofrequency radiation induces oxidative stress in duckweed lemna minor l. Sci. Total Environ. 388:78–89.
  • Tkalec, M., Malarić, K., Pavlica, M., et al. (2009). Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat. Res. 672:76–81.
  • Trebbi, G., Borghini, F., Lazzarato, L., et al. (2007). Extremely low-frequency weak magnetic fields enhance resistance of nn tobacco plants to tobacco mosaic virus and elicit stress-related biochemical activities. Bioelectromagnetics 28:214–223.
  • Urech, M., Eicher, B., Siegenthaler, J. (1996). Effects of microwave and radio frequency electromagnetic fields on lichens. Bioelectromagnetics 17:327–334.
  • Ursache, M., Mindru, G., Creanga, D. E., et al. (2007). The effects of high frequency electromagnetic waves on the vegetal organisms. Rom. J. Phys. 54:133–145.
  • Verschaeve, L. (2014). Environmental impact of radiofrequency fields from mobile phone base stations. Crit. Rev. Environ. Sci. Technol. 44:1313–1369.
  • Vian, A., Roux, D., Girard, S., et al. (2006). Microwave irradiation affects gene expression in plants. Plant Sign. Behav. 1:67–70.
  • Vian, A., Davies, E., Gendraud, M., Bonnet, P. (2016). Plant responses to high frequency electromagnetic fields. Biomed. Res. Int. doi:10.1155/2016/1830262.
  • Waldmann-Selsam, C., Eger, H. (2013). Baumschäden im umkreis von mobilfunksendeanlagen, umwelt medizin gesellschaft. Environ. Med. 26:198–208.
  • Wang, J., Sakurai, T., Koyama, S., et al. (2005). Effects of 2450 MHz electromagnetic fields with a wide range of SARs on methylcholanthrene-induced transformation in C3H10T1/2 cells. J. Radiat. Res. 3:351–361.
  • Wang, J., Koyama, S., Komatsubara, Y., et al. (2006). Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of the induction of heat-shock proteins in A172 cells. Bioelectromagnetics 27:479–486.
  • World Health Organisation (2006). Electromagnetic fields and public health. Available from: http://www.who.int/mediacentre/factsheets/fs304/en/index.html. (accessed April 2016)
  • World Health Organisation (2011). IARC Classifies Radiofrequency Electromagnetic Fields as Possibly Carcinogenic to Humans. Lyon: World Health Organisation. Press Release.
  • Xiujuan, W., Bochu, W., Yi, J., et al. (2003). Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids Surf. B 29:103–107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.