273
Views
5
CrossRef citations to date
0
Altmetric
Articles

Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation

, , , , , , , , & show all
Pages 158-166 | Received 06 Apr 2016, Accepted 05 Sep 2016, Published online: 03 Oct 2016

References

  • Aboul Ezz, H. S., Khadrawy, Y. A., Ahmed, N. A., et al. (2013). The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain. Eur. Rev. Med. Pharmacol. Sci. 17:1782–1788.
  • Bas, O., Odaci, E., Mollaoglu, H., et al. (2009). Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol. Ind. Health 25:377–384.
  • Blomstrand, M., Kalm, M., Grander, R., et al. (2014). Different reactions to irradiation in the juvenile and adult hippocampus. Int. J. Radiat. Biol. 90:807–815.
  • Cammaerts, M. C., De Doncker, P., Patris, X., et al. (2012). GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagn. Biol. Med. 31:151–165.
  • Capri, M., Scarcella, E., Bianchi, E., et al. (2004). 1800 MHz radiofrequency (mobile phones, different Global System for Mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors. Int. J. Radiat. Biol. 80:389–397.
  • Chavdoula, E. D., Panagopoulos, D. J., Margaritis, L. H. (2010). Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: Detection of apoptotic cell-death features. Mutat. Res. 700:51–61.
  • Christ, A., Gosselin, M. C., Christopoulou, M., et al. (2010). Age-dependent tissue-specific exposure of cell phone users. Phys. Med. Biol. 55:1767–1783.
  • Cook, C. M., Saucier, D. M., Thomas, A. W., Prato, F. S. (2006). Exposure to ELF magnetic and ELF-modulated radiofrequency fields: The time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics 27:613–627.
  • Curtis, M. A., Kam, M., Nannmark, U., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249.
  • Daniels, W. M., Pitout, I. L., Afullo, T. J., Mabandla, M. V. (2009). The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis. 24:629–641.
  • Deng, Y., Zhang, Y., Jia, S., et al. (2013). Effects of aluminum and extremely low frequency electromagnetic radiation on oxidative stress and memory in brain of mice. Biol. Trace Elem. Res. 156:243–252.
  • Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., et al. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313–1317.
  • Eser, O., Songur, A., Aktas, C., et al. (2013). The effect of electromagnetic radiation on the rat brain: An experimental study. Turk. Neurosurg. 23:707–715.2.
  • Esmekaya, M. A., Ozer, C., Seyhan, N. (2011). 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen. Physiol. Biophys. 30:84–89.
  • Esmekaya, M. A., Tuysuz, M. Z., Tomruk, A., et al. (2016). Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure. J. Chem. Neuroanat., 75:111–115.
  • Hardell, L., Sage, C. (2008). Biological effects from electromagnetic field exposure and public exposure standards. Biomed. Pharmacother. 62:104–109.
  • Hellstrom, N. A., Bjork-Eriksson, T., Blomgren, K., Kuhn, H. G. (2009). Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27:634–641.
  • Herbert, M. R., Sage, C. (2013). Autism and EMF? Plausibility of a pathophysiological link part II. Pathophysiology 20:211–234.
  • Hsu, M. H., Syed-Abdul, S., Scholl, J., et al. (2013). The incidence rate and mortality of malignant brain tumors after 10 years of intensive cell phone use in Taiwan. Eur. J. Cancer Prev. 22:596–598.
  • Huo, K., Sun, Y., Li, H., et al. (2012). Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol. Cell Neurosci. 51(1–2):32–42.
  • Kesari, K. K., Kumar, S., Nirala, J., et al. (2013). Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem. Biophys. 65:85–96.
  • Kheifets, L., Repacholi, M., Saunders, R., van Deventer, E. (2005). The sensitivity of children to electromagnetic fields. Pediatrics 116:e303–313.
  • Kida, H., Nomura, S., Shinoyama, M., et al. (2013). The effect of hypothermia therapy on cortical laminar disruption following ischemic injury in neonatal mice. PLoS One 8:e68877.
  • Korosi, A., Naninck, E.F., Oomen, C.A., et al. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behav. Brain Res. 227:400–409.
  • Leone, L., Fusco, S., Mastrodonato, A., et al. (2014). Epigenetic modulation of adult hippocampal neurogenesis by extremely low-frequency electromagnetic fields. Mol Neurobiol. 49:1472–1486.
  • Naylor, A. S., Bull, C., Nilsson, M. K., et al. (2008). Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc. Nat. Acad. Sci. USA 105:14632–14637.
  • Odaci, E., Bas, O., Kaplan, S. (2008). Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: A stereological and histopathological study. Brain Res. 1238:224–229.
  • Oomen, C. A., Soeters, H., Audureau, N., et al. (2010). Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci. 30(19):6635–6645.
  • Oppenheim, R. W., Blomgren, K., Ethell, D. W., et al. (2008). Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy. J. Neurosci. 28:1490–1497.
  • Orendacova, J., Orendac, M., Mojzis, M., et al. (2011). Effects of short-duration electromagnetic radiation on early postnatal neurogenesis in rats: Fos and NADPH-d histochemical studies. Acta Histochem. 113:723–728.
  • Orendacova, J., Racekova, E., Orendac, M., et al. (2009). Immunohistochemical study of postnatal neurogenesis after whole-body exposure to electromagnetic fields: evaluation of age- and dose-related changes in rats. Cell Mol. Neurobiol. 29:981–990.
  • Ozgur, E., Kismali, G., Guler, G., et al. (2013). Effects of prenatal and postnatal exposure to GSM-like radiofrequency on blood chemistry and oxidative stress in infant rabbits, an experimental study. Cell Biochem. Biophys. 67:743–751.
  • Pilla, A. A. (2013). Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagn. Biol. Med. 32:123–136.
  • Podda, M. V., Leone, L., Barbati, S. A., et al. (2014). Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. Eur. J. Neurosci. 39:893–903.
  • Qiu, L., Zhu, C., Wang, X., et al. (2007). Less neurogenesis and inflammation in the immature than in the juvenile brain after cerebral hypoxia-ischemia. J. Cereb. Blood Flow Metab. 27:785–794.
  • Ragy, M. M. (2015). Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats. Electromagn. Biol. Med. 34:279–284.
  • Saikhedkar, N., Bhatnagar, M., Jain, A., et al. (2014). Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurol. Res. 36:1072–1079.
  • Sangun, O., Dundar, B., Darici, H., et al. (2015). The effects of long-term exposure to a 2450 MHz electromagnetic field on growth and pubertal development in female Wistar rats. Electromagn. Biol. Med., 34:63–71.
  • Waldmann, P., Bohnenberger, S., Greinert, R., et al. (2013). Influence of GSM signals on human peripheral lymphocytes: Study of genotoxicity. Radiat. Res. 179:243–253.
  • Walter, J., Keiner, S., Witte, O.W., Redecker, C. (2011). Age-related effects on hippocampal precursor cell subpopulations and neurogenesis. Neurobiol. Aging. 32:1906–1914.
  • Xu, S., Chen, G., Chen, C., et al. (2013). Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions. PLoS One, 8:e54906.
  • Yokus, B., Akdag, M. Z., Dasdag, S., et al. (2008). Extremely low frequency magnetic fields cause oxidative DNA damage in rats. Int. J. Radiat. Biol. 84:789–795.
  • Zhang, Y., Li, Z., Gao, Y., Zhang, C. (2015). Effects of fetal microwave radiation exposure on offspring behavior in mice. J. Radiat. Res. 56:261–268.
  • Zhao, R., Zhang, S., Xu, Z., et al. (2007). Studying gene expression profile of rat neuron exposed to 1800 MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology 235:167–175.
  • Zhu, C., Gao, J., Karlsson, N., et al. (2010). Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J. Cereb. Blood Flow Metab. 30: 1017–1030.
  • Zhu, C., Gao, J., Li, Q., et al. (2011). Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function. Biochem. Biophys. Res. Commun. 404:291–296.
  • Zhu, C., Wang, X., Hagberg, H., Blomgren, K. (2000). Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J. Neurochem. 75:819–829.
  • Zhu, C., Wang, X., Xu, F., et al. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 12:162–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.