204
Views
20
CrossRef citations to date
0
Altmetric
Articles

Increased water content in bacterial cellulose synthesized under rotating magnetic fields

, , , , , , , & show all
Pages 192-201 | Received 21 Jun 2016, Accepted 28 Sep 2016, Published online: 27 Oct 2016

References

  • Al-Shamary, E. E., Al-Darwash, A. K. (2013). Influence of fermentation condition and Alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J. Sci. Technol. 3:194–203.
  • Astley, O. M., Chaliaud, E., Donald, A. M., et al. (2003). Tensile deformation of bacterial cellulose composites. Int. J. Biol. Macromol. 32:28–35.
  • Brown, R. M., Jr., Brown, D. S., Gretz, M. R. (1987). Magnetic alteration of cellulose during its biosynthesis. In Patent Notification EP 0197748.
  • Brown, R. M., Jr., Brown, D. S., Gretz, M. R. (1990). Magnetic alternation of cellulose during its biosynthesis. In Patent Notification US 4891317.
  • Charpentier, P. A., Maguire, A., Wan, W. (2006). Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl. Surf. Sci. 252:6360–6367.
  • Chen, H. H., Lin, S. B., Hsu, C. P., et al. (2013). Modifying bacterial cellulose with gelatin peptides for improved rehydration. Cellulose 20:1967–1977.
  • Cheng, Q., Wang, J., McNeel, J., et al. (2010). Water retention value measurements of cellulosic materials using a centrifuge technique. BioResourses 5:1945–1954.
  • Colvin, J. R., Witter, D. E. (1983). Congo red and calcofluor white inhibition of Acetobacter xylinum cell growth of bacterial cellulose microfibril formation: Isolation and properties of a transient, extracellular glucan related to cellulose. Protoplasma 116:34–40.
  • Cranston, E. D., Gray, D. G. (2006). Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci. Technol. Adv. Mat. 7:319–321.
  • Czaja, W., Young, D. J., Kawechi, M., et al. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12.
  • De Gennes, P. G., Prost, J. (1993). The Physics of Liquid Crystals. New York, NY: Oxford University Press Inc.
  • Farah, L. F. (1990). Process of the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. US Patent No. 4912049.
  • Fijałkowski, K., Żywicka, A., Drozd, R., et al. (2015). Modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohyd. Polym. 133:52–60.
  • Gao, C., Wan, Y., Yang, C., et al. (2011). Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J. Porous Mat. 18:139–145.
  • Guo, J., Catchmark, J. M. (2012). Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohyd. Polym. 87:1026–1037.
  • Helenius, G., Bäckdahl, H., Bodin, A., et al. (2006). In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A. 76:431–438.
  • Hesse, S., Kondo, T. (2005). Behavior of cellulose production of Acetobacter xylinum in 13Cenriched cultivation media including movements on nematic ordered cellulose templates. Carbohyd. Polym. 60:457–465.
  • Hirai, A., Tsuji, M., Yamamoto, H., et al. (1998). In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213.
  • Kaewnopparat, S., Sansernluk, K., Faroongsarng, D. (2008). Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: An approach using thermoporosimetry. AAPS PharmSciTech 9:701–707.
  • Kimura, F., Kimura, T., Tamura, M., et al. (2005). Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037.
  • Kitaoka, K., Yamamoto, H., Tani, T., et al. (1997). Mechanical strength and bonebonding of a titanium fiber mesh block for intervertebral fusion. J. Orthop. Sci. 2:106–113.
  • Klemm, D., Schumann, D., Udhardt, U., et al. (2001). Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog. Polym. Sci. 26:1561–1603.
  • Lagerwall, J. P. F., Schütz, Ch., Salajkova, M., et al. (2014). Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:80. doi:10.1038/am.2013.69.
  • Li, M. G., Tian, X. Y., Chen, X. B. (2009). Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication. J Manuf Sci E-T ASME 131:034501–034505.
  • Lin, S. B., Hsu, C. P., Chen, L. Ch., et al. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloids 23:2195–2203.
  • Mancini, C. E., Berndt, C. C., Sun, L., et al. (2001). Porosity determinations in thermally sprayed hydroxyapatite coatings. J. Mater. Sci. 36:3891–3896.
  • Maneerung, T., Tokura, S., Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd. Polym. 72:43–51.
  • Meftahi, A., Khajavi, R., Rashidi, A., et al. (2010). The effect of cotton gauze coating with microbial cellulose. Cellulose 17:199–204.
  • Mohite, B. V., Patil, S. V. (2014). Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohyd. Polym. 106:132–141.
  • Moritz, S., Wiegand, C., Wesarg, F., et al. (2014). Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharmaceut. 471:45–55.
  • Ougiya, H., Watanabe, K., Matsumura, T., et al. (1998). Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Biosci. Biotech. Bioch. 62:1714–1719.
  • Pandey, M., Mohamad, N., Amin, M. C. I. M. (2014). Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: Development, characterization, and toxicity studies in ICR mice model. Mol. Pharmaceut. 11:3596−3608.
  • Park, M., Park, S., Hyun, J. (2012). Use of magnetic nanoparticles to manipulate the metabolic environment of bacteria for controlled biopolymer synthesis. ACS Appl. Mater. Interfaces 4:5114–5117.
  • Păvăloiu, R. D., Stoica-Guzun, A., Dobre, T. (2015). Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U Politeh. Buch. Ser. B. 77:31–40.
  • Piatkowski, A., Drummer, N., Andriessen, A., et al. (2011). Randomized controlled single center study comparing a polyhexanide containing bio-cellulose dressing with silver sulfadiazine cream in partial-thickness dermal burns. Burns 37:800–804.
  • Rakoczy, R. (2013). Mixing energy investigations in a liquid vessel that is mixed by using a rotating magnetic field. Chem. Eng. Process. 66:1–11.
  • Revol, J. F., Godbout, D. L., Dong, X. M., et al. (1994). Chiral nematic suspensions of cellulose crystallites – phase-separation and magnetic-field orientation. Liq. Cryst. 16:127–134.
  • Rezaee, A., Godini, H., Bakhtou, H. (2008). Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ. Eng. Manag. J. 7:589–594.
  • Ruka, D. R., Simon, G. P., Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd. Polym. 89:613–622.
  • Schrecker, S. T., Gostomski, P. A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnol. Lett. 27:1435–1438.
  • Shah, N., Ha, J. H., Park, J. K. (2010). Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioproc. E. 15:110–118.
  • Shezad, O., Khan, S., Khan, T., et al. (2010). Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd. Polym. 82:173–180.
  • Sugiyama, J., Chanzy, H., Maret, G. (1992). Orientation of cellulose microcrystals by strong magnetic field. Macromolecules 25:4232–4234.
  • Svensson, A., Nicklasson, E., Harrah, T., et al. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431.
  • Ul-Islam, M., Shah, N., Ha, J. H., et al. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J. Chem. Eng. 28:1025–1031.
  • Wong, S. S., Kasapis, S., Huang, D. (2012). Molecular weight and crystallinity alternation of cellulose via prolonged ultrasound fragmentation. Food Hydrocolloids 26:365–369.
  • Wong, S. S., Kasapis, S., Tan, S. Y. M. (2009). Bacterial and plant cellulose modification using ultrasound irradiation. Carbohyd. Polym. 77:280–287.
  • Yamanaka, S., Ishihara, M., Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose 7:213–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.