85
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus

ORCID Icon, , & ORCID Icon
Pages 99-113 | Received 24 Sep 2022, Accepted 05 Mar 2023, Published online: 08 May 2023

References

  • Abd-Elghany Amr, A., E. A. Mohamad, F. M. Ali, A. M. Yousef, S. Marwa, A. Nawal, A. Seham, A. Eslam, and A. El-Sakhaw Mohamed. 2022. Antibacterial control of an extremely low frequency electric field on Escherichia coli. Int. J. Biomed. 12 :293–98. doi:10.21103/Article12(2)_OA17.
  • Abd-Elghany, A. A., E. A. Mohamad, M. A. El-Sakhawy, S. Mansouri, S. H. Ismail, and M. S. Elneklawi. 2022. Enhancement of mechanical properties of chitosan film by doping with sage extract-loaded niosomes. Mater. Res. Express 9:035006. doi:10.1088/2053-1591/ac600a.
  • Abdelmoneam, E. A., M. M. Rageh, and E. A. Mohamad. 2022. Antitumor efficacy of Curcumin nanoparticles. Egypt. J. Chem. doi:10.21608/ejchem.2022.152966.6623.
  • Abo-Neima, S. E., Y. I. Khedr, H. A. Motaweh, M. M. Kotb, and A. Elhoseiny. 2016. Control the metabolic activities of E.Coli and S. aureus bacteria by electric field waves at resonance frequency in vitro study. Res. Gate. 6:13–25.
  • Ahmed, H. M., M. M. Rageh, and E. A. Mohamad. 2022. Curcumin provides skin Protection against UV radiation. Egypt. J. Chem. 65:1341–1343.
  • Ahmed, B., A. Syed, K. Ali, A. M. Elgorban, A. Khan, J. Lee, and A.A.S. Hind. 2021. Synthesis of gallotannin capped iron oxide nanoparticles and their broad spectrum biological applications. RSC. Adv. 11:9880–93. doi:10.1039/d1ra00220a.
  • Ali, K., B. Ahmed, M. Saghir Khan, and J. Musarrat. 2018. Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles. J. Photochem. Photobiol. B, Biol. 188:146–58. doi:10.1016/j.jphotobiol.2018.09.017.
  • Ali, F. M., A. M. El_khatib, S. A. Sabry, S. E. Abo_neima, and H. A. Motaweh. 2013. Control of Staphylococcus Aureus Growth by Electromagnetic Therapy. Natural. Sci. 6:169–178.
  • Ali, M. M., M. A. Ramadan, N. A. Ghazawy, A. Amira, and S. A. Mousa. 2022. Photochemical effect of silver nanoparticles on flesh fly larval biological system. Acta. Histochem. 124:151871. doi:10.1016/j.acthis.2022.151871.
  • Amin, R. M., M. B. Mohamed, M. A. Ramadan, T. Verwanger, and B. Krammer. 2009. Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine 4:637–43. doi:10.2217/nnm.09.50.
  • Amr, A.A.E., and A. M. Ebtsam. 2020. Ex-vivo transdermal delivery of annona squamosa entrapped in niosomes by electroporation. J. Radiat. Res. Appl. Sci. 13 :164–73. doi:10.1080/16878507.2020.1719329.
  • Amr, A.A.E., and A. M. Ebtsam. 2021. Antitumor impact of iron oxide nanoparticles in Ehrlich carcinoma-bearing mice. J. Radiat. Res. Appl. Sci 14 :314–21. doi:10.1080/16878507.2021.1957398.
  • Ansari, M. O., M. Ahmad, N. Parveen, S. Ahmad, S. Jameel, and G. Shadab. 2017. Iron oxide nanoparticles-synthesis, surface modification, applications and toxicity: A review. Mater. Focus 6 :269–79. doi:10.1166/mat.2017.1410.
  • Ansari, S. A. M. K., E. Ficiarà, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata. 2019. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 12 :465. doi:10.3390/ma12030465.
  • Ansari, A. M., H. M. Khan, A. A. Khan, W. S. Cameotra, and R. Pal. 2013. Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl. Nanosci 4 :859–68. doi:10.1007/s13204-013-0266-1.
  • Arakha, M., S. Pal, D. Samantarrai, T. K. Panigrahi, B. C. Mallick, K. Pramanik, B. Mallick, and S. Jha. 2015. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5 :1–12. doi:10.1038/srep14813.
  • Ayman, E., A.D. Musaad, M. Eman, and M. Ihab. 2018. Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats. Microbiology Open. John Wiley & Sons. pp. 1–16. doi:10.1002/mbo3.698.
  • Bilal, A., A. Fuad, R. Asfa, A. Khursheed, S. Hana, Z. Almas, K. Mohammad Saghir, and M. Javed. 2020. Destruction oF cell topography, morphology, membrane, inhibition of respiration, biofilm formation, and bioactive molecule production by nanoparticles of Ag, ZnO, CuO, TiO2, and Al2O3 toward beneficial soil bacteria. ACS. Omega. 5 :7861–76. doi:10.1021/acsomega.9b04084.
  • Bucko, S., A. Čuvalová, J. Labun, J. Zbojovský, D. Bujňáková, and V. Kmeť. 2021. Modulation of Staphylococcus aureus biofilm by electromagnetic radIATion. J. Microbiol. Biotechnol. Food. Sci. 9 :1020–22. doi:10.15414/jmbfs.2020.9.5.1020-1022.
  • Cho, K. H., J. E. Park, T. Osaka, and S. G. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51:956–60. doi:10.1016/j.electacta.2005.04.071.
  • Das, S., S. Diyali, G. Vinothini, B. Perumalsamy, G. Balakrishnan, T. Ramasamy, D. Dharumadurai, and B. Biswas. 2020. Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 6 :e04953. doi:10.1016/j.heliyon.2020.e04953.
  • da Silva, F. A. G., J. J. Alcaraz-Espinoza, M. M. da Costa, and H. P. de Oliveira. 2019. Low intensity electric field inactivation of Gram-positive and Gram-negative bacteria via metal-free polymeric composite. Mater. Sci. Eng. C Mater. Biol. Appl. 99:827–37. doi:10.1016/j.msec.2019.02.027.
  • EA, M., and F. HM. 2020. Niosomes and liposomes as promising carriers for dermal delivery of Annona squamosa extract. Brazilian. J. Pharm. Sci. 55:e18096.
  • Editorial. 2020. Antimicrobial resistance in the age of COVID-19. 2020. Nat. Microbiol. 5 :779. doi:10.1038/s41564-020-0739-4.
  • Enan, E. T., A. A. Ashour, S. Basha, H. Felemban Nayef, and E.R.S.M.F. Gad. 2021. Antimicrobial activity of biosynthesized silver nanoparticles, amoxicillin, and glass-ionomer cement against Streptococcus mutans and Staphylococcus aureus. Nanotechnology 32 :215101. doi:10.1088/1361-6528/abe577.
  • Fadel, M. A., H. M. Ahmed, A. A. Nashwa, and S. E. Mona. 2018. Evaluation of the Effect of Extremely Low-Frequency Electromagnetic Fields on the Growth of Escherichia coli. Int. J. Sci. Eng. Res. 9 :2229–5518.
  • Fadel, A. M., R. H. Elgebaly, M. S. Elneklawi, and A. S. Othman. 2016. Role of duty cycle on Pseudomonas aeruginosa growth inhibition mechanisms by positive electric pulses. Biomed. Mater. Eng. 27 :211–25. doi:10.3233/BME-161577.
  • Feng, Q. L., J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52:662. doi:10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3.
  • Giladi, M., Y. Porat, A. Blatt, Y. Wasserman, E. D. Kirson, E. Dekel, and Y. Palti. 2008. Microbial growth inhibition by alternating electric fields. AAC 52 :3517–22. doi:10.1128/AAC.00673-08.
  • Gnanamani, A., P. Hariharan, and M. Paul-Satyaseela. 2017. Staphylococcus aureus: overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic Approach. Intech. doi:10.5772/67338.
  • Gudkov, S. V., D. E. Burmistrov, D. A. Serov, M. B. Rebezov, A. A. Semenova, and A. B. Lisitsyn. 2021. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics 10:884. doi:10.3390/antibiotics10070884.
  • Hardy, B. L., G. Bansal, K. H. Hewlett, A. Arora, S. D. Schaffer, E. Kamau, J. W. Bennett, and D. S. Merrell. 2020. Antimicrobial activity of clinically isolated bacterial species against Staphylococcus aureus. Front. Microbiol. 15 :2977. doi:10.3389/fmicb.2019.02977. PMID: 32010080; PMCID: PMC6975196.
  • Haroon, M., A. Zaidi, B. Ahmed, A. Rizvi, M. S. Khan, and J. Musarrat. 2019. Effective inhibition of phytopathogenic microbes by eco-friendly leaf extract mediated silver nanoparticles (AgNps). Indian J. Microbiol. 59:273–87. doi:10.1007/s12088-019-00801-5.
  • Heba, M. F., M. R. I. Amani, A. E. Anwar, and A. M. Ebtesam. 2021. Electroporation-enhanced entrapment of diclofenac sodium and ascorbic acid into DPPC liposomes. Res. J. Biotechnol 16 :19–26. doi:10.25303/1611rjbt1926.
  • Huh, A. J., and Y. J. Kwon. 2011. Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 156 :128–45. doi:10.1016/j.jconrel.2011.07.002.
  • Ibelli, T., S. Templeton, and N. Levi-Polyachenko. 2018. Progress on utilizing hyperthermia for mitigating bacterial infections. Int. J. Hyperthermia 34:144–56. doi:10.1080/02656736.2017.1369173.
  • Iqbal, T., A. Hassan, and S. Ghazal. 2016. Synthesis of iron oxide, cobalt oxide and silver nanoparticles by different techniques: A review. Int. J. Sci. Eng. Res. 7:1178–221.
  • Kantala, C., S. Supasin, P. Intra, and P. Rattanadecho. 2022. Evaluation oF pulsed electric field and conventional thermal processing for microbial inactivation in Thai orange juice. Foods 11 :1102. doi:10.3390/foods11081102.
  • Li, D., M. Shen, J. Xia, and X. Shi. 2021. Recent developments of cancer nanomedicines based on ultrasmall iron oxide nanoparticles and nanoclusters. Nanomedicine 16:609–12. doi:10.2217/nnm-2021-0033.
  • Li, J., G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, and X. Wang. 2014. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 4:4359. doi:10.1038/srep04359.
  • Li, W. R., X. B. Xie, Q. S. Shi, S. S. Duan, Y. S. Ouyang, and Y. B. Chen. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24 :135–41. doi:10.1007/s10534-010-9381-6. Epub 2010 Oct 12. PMID: 20938718.
  • Maleki, D. S., A. Mennati, S. Jafari, K. Khezri, and K. Adibkia. 2015. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull 5 :19–23. doi:10.5681/apb.2015.003. Epub 2015 Mar 5. PMID: 25789215; PMCID: PMC4352219.
  • Mengyuan, Q., Y. Liu, S. Shi, Y. Xian, Q. Liu, H. Yan, Y. Zhang, and Y. Yuan. 2022. Inhibition mechanism of high voltage prick electrostatic field (HVPEF) on Staphylococcus aureus through ROS-mediated oxidative stress. LWT. Food. Sci. Technol 155:112990. doi:10.1016/j.lwt.2021.112990.
  • Mohamad, E. A., K. A. Ahmed, and H. S. Mohammed. 2022. Evaluation of the skin protective effects of niosomal-entrapped annona squamosa against UVA irradiation. Photochem. Photobiol. Sci. 21 :2231–41. doi:10.1007/s43630-022-00291-3.
  • Mohamad, E. A., F. M. Ali, N. M. Balabel, and M. R. Mostafa. 2022. The nonthermal ELF-EP technique decrease the resistance of bacteria to antibiotics. Archiv. Phytopathol. Plant. Protect 55 :1944–60. doi:10.1080/03235408.2022.2125144.
  • Mohamad, E. A., A. A. Aly, A. A. Khalaf, M. I. Ahmed, R. M. Kamel, S. M. Abdelnaby, Y. H. Abdelzaher, M. G. Sedrak, and S. A. Mousa. 2021. Evaluation of natural bioactive derived punicalagin niosomes in skin aging processes accelerated by oxidant and Ultra-Violet Radiation. Drug. Des. Devel. Ther. 15:3151–62. doi:10.2147/DDDT.S316247.
  • Mohamad, E. A., A. M. Gad, R. H. Abd El-Rhman, and M. M. Darwish. 2023. Chitosan and Aloe Vera decorated nanoparticulate system loaded with Minoxidil as a suggested topical formulation for alopecia therapy. Adv. Nat. Sci.: Nanosci. Nanotechnol. 14:025002.
  • Mohammed, H., A. Kumar, E. Bekyarova, Y. Al-Hadeethi, X. Zhang, M. Chen, M. S. Ansari, A. Cochis, and L. Rimondini. 2020. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. a scope review. Front. Bioeng. Biotechnol 8:465. doi:10.3389/fbioe.2020.00465.
  • Monira, M. R., R.E.G. Marwa, and A. M. Ebtesam. 2020. Magnetic fields enhance the anti-tumor efficacy of low dose cisplatin and reduce the nephrotoxicity. Naunyn. Schmiedeberg’s. Archiv. Pharmacol. 393 :1475–85. doi:10.1007/s00210-020-01855-9.
  • Otto, M. 2010. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64:143–62. doi:10.1146/annurev.micro.112408.134309. PMID: 20825344.
  • Percival, S. L., P. G. Bowler, and D. Russell. 2005. Bacterial resistance to silver in wound care. J. Hosp. Infect. 60:1. doi:10.1016/j.jhin.2004.11.014.
  • Rania, H. H., A. T. Ali, and M. A. Oday. 2021. Study Of biological activities of magnetic iron oxide nanoparticles prepared by co-precipitation method. J. Appl. Sci. Nanotechnol 1 :2. doi:10.53293/jasn.2021.11635.
  • Rani, P., B. Ahmed, J. Singh, J. Kaur, M. Rawat, N. Kaur, A. Singh Matharu, M. AlKahtani, E. A. H. Alhomaidi, and J. Lee. 2022. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi. J. Biol. Sci 29:6. doi:10.1016/j.sjbs.2022.103296.
  • Rawson, T. M., L. S. P. Moore, N. Zhu, N. Ranganathan, K. Skolimowska, M. Gilchrist, G. Satta, G. Cooke, and A. Holmes. 2020. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 71 :2459–68. doi:10.1093/cid/ciaa530. PMID: 32358954; PMCID: PMC7197596.
  • Sakr, A., F. Brégeon, J. -L. Mège, J. -M. Rolain, and O. Blin. 2018. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 9:2419. doi:10.3389/fmicb.2018.02419.
  • Saliani, M., R. Jalal, and K. E. Goharshadi. 2015. Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur. J. Microbiol. 8:e17115. doi:10.5812/jjm.17115.
  • Sihem, L., D. Hanine, and B. Faiza. 2020. Antibacterial Activity of α-Fe2O3 and α-Fe2O3@Ag Nanoparticles Prepared by Urtica Leaf Extract. Nanotechnol. Russ. 15 :198–203. doi:10.1134/S1995078020020135.
  • Tahoun, A., H. K. Elnafarawy, H. El-Sharkawy, A. M. Rizk, M. Alorabi, A. M. El-Shehawi, M. A. Youssef, H. M. M. Ibrahim, and S. El-Khodery. 2022. The prevalence and molecular biology of staphylococcus aureus isolated from healthy and diseased equine eyes in Egypt. Antibiotics 11:221. doi:10.3390/antibiotics11020221.
  • Tieleman, D. P. 2004. The molecular basis of electroporation. BMC. Biochem. 5:10. doi:10.1186/1471-2091-5-10.
  • Toledo-Silva, B., F. N. de Souza, K. Mertens, S. Piepers, F. Haesebrouck, and S. De Vliegher. 2021. Bovine-associated non-aureus staphylococci suppress Staphylococcus aureus biofilm dispersal in vitro yet not through agr regulation. Vet. Res. 52:114. doi:10.1186/s13567-021-00985-z.
  • Truong, V. I. T. T., S. R. Kumar, J. S. Pang, Y. K. Liu, D. W. Chen, and S. J. Lue. 2020. Synergistic antibacterial activity of silver-loaded graphene oxide towards Staphylococcus Aureus and Escherichia Coli. Nanomaterials. 10 :366. doi:10.3390/nano10020366. PMID: 32093180; PMCID: PMC7075295.
  • Wang, H., M. Wang, X. Xu, P. Gao, Z. Xu, Q. Zhang, H. Li, A. Yan, R. Y. Kao, and H. Sun. 2021. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 12 :3331. doi:10.1038/s41467-021-23659-y. PMID: 34099682; PMCID: PMC8184742.
  • Xu, J., Y. Li, H. Wang, M. Zhu, W. Feng, and G. Liang. 2021. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int. J. Nanomedicine. 16 :4831–46. doi:10.2147/IJN.S315839. PMID: 34295158; PMCID: PMC8291838.
  • Yu, H. H., Y. -W. Chin, and H. -D. Paik. 2021. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: a review. Foods 10 :2418. doi:10.3390/foods10102418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.