157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the effect of selenium on cyclin D1 level and nuclear factor kappa b activity in NIH/3T3 fibroblast cells at 2100 MHz electromagnetic field exposure

ORCID Icon, , , &
Pages 123-132 | Received 24 Apr 2023, Accepted 20 Aug 2023, Published online: 28 Aug 2023

References

  • Alahmad, Y. M., M. Aljaber, A. I. Saleh, H. C. Yalcin, T. Aboulkassim, A. Yasmeen, G. Batist, and A. A. Moustafa. 2018. Effect of cell-phone radiofrequency on angiogenesis and cell invasion in human head and neck cancer cells. Head Neck 40:2166–71. doi:10.1002/hed.25210.
  • Alao, J. P. 2007. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer 6:24. doi:10.1186/1476-4598-6-24.
  • Alkis, M. E., H. M. Bilgin, V. Akpolat, S. Dasdag, K. Yegin, M. C. Yavas, and M. Z. Akdag. 2019. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol. Med 38:32–47. doi:10.1080/15368378.2019.1567526.
  • Aydogan, F., E. Aydın, G. Koca, E. Ozgur, P. Atilla, A. Tuzuner, S. Demirci, A. Tomruk, G. G. Ozturk, N. Seyhan, et al. 2015. The effects of 2100-MHz radiofrequency radiation on nasal mucosa and mucociliary clearance in rats. Int. Forum Allergy Rhinol 5:626–32. doi:10.1002/alr.21509.
  • Bailey, W. H., T. Harrington, A. Hirata, R. R. Kavet, J. Keshvari, B. J. Klauenberg. 2019. Synopsis of IEEE Std C95.1TM-2019 “IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz. IEEE. Access 7:171346–56. doi:10.1109/ACCESS.2019.2954823.
  • Burkhardt, M., K. Poković, M. Gnos, T. Schmid, and N. Kuster. 1996. Numerical and experimental dosimetry of Petri dish exposure setups. Bioelectromagnetics 17:483–93. doi:10.1002/(SICI)1521-186X(1996)17:6 <483:AID-BEM8>3.0.CO;2-#.
  • Chandel, S., S. Kaur, M. Issa, H. P. Singh, D. R. Batish, and R. K. Kohli. 2019. Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa. Protoplasma 256:1399–407. doi:10.1007/s00709-019-01386-y.
  • Ding, Z., X. Xiang, J. Li, and S. Wu. 2021. Long-term 1800MHz electromagnetic radiation did not induce Balb/c-3T3 cells malignant transformation. Electromagn Biol. Med 40:169–78. doi:10.1080/15368378.2020.1846194.
  • Dong, Y., H. Zhang, L. Hawthorn, H. E. Ganther, and C. Ip. 2003. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63:52–59.
  • Duzgun Ergun, D., N. Pastaci Ozsobaci, T. Yilmaz, D. Ozcelik, and M. T. Kalkan. 2022. Zinc affects nuclear factor kappa b and DNA methyltransferase activity in C3H cancer fibroblast cells induced by a 2100 MHz electromagnetic field. Electromagn Biol. Med 41:93–100. doi:10.1080/15368378.2021.2019760.
  • Fu, M., C. Wang, Z. Li, T. Sakamaki, and R. G. Pestell. 2004. Minireview: Cyclin D1: Normal and abnormal functions. Endocrinology 145:5439–47. doi:10.1210/en.2004-0959.
  • Golias, C. H., A. Charalabopoulos, and K. Charalabopoulos. 2004. Cell proliferation and cell cycle control: A mini review. Int. J. Clin. Pract. 58:1134–41. doi:10.1111/j.1742-1241.2004.00284.x.
  • Górski, R., A. Nowak-Terpiłowska, P. Śledziński, M. Baranowski, and S. Wosiński. 2021. Morphological and cytophysiological changes in selected lines of normal and cancer human cells under the influence of a radio-frequency electromagnetic field. Ann Agric. Environ. Med 28:163–71. doi:10.26444/aaem/118260.
  • Hou, Q., M. Wang, S. Wu, X. Ma, G. An, H. Liu, and F. Xie. 2015. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells. Electromagn Biol. Med 34:85–92. doi:10.3109/15368378.2014.900507.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). 1998. Guidelines for limiting exposure to electromagneticfields (100 kHz to 300 GHz. Health Phys. 74:494–522.
  • Jarosz, M., M. Olbert, G. Wyszogrodzka, K. Młyniec, and T. Librowski. 2017. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25:11–24. doi:10.1007/s10787-017-0309-4.
  • Joyce, D., C. Albanese, J. Steer, M. Fu, B. Bouzahzah, and R. G. Pestell. 2001. NF-kappa B and cell-cycle regulation: The cyclin connection. Cytokine Growth Factor Rev. 12:73–90. doi:10.1016/s1359-6101(00)00018-6.
  • Kahya, M. C., M. Nazıroglu, and B. Cig. 2014. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol. Trace Elem. Res. 160:285–93. doi:10.1007/s12011-014-0032-6.
  • Khoshbakht, S., F. Motejaded, S. Karimi, N. Jalilvand, and A. Ebrahimzadeh-Bideskan. 2021. Protective effects of selenium on electromagnetic field-induced apoptosis, aromatase P450 activity, and leptin receptor expression in rat testis. Iran J. Basic Med. Sci 24:322–30. doi:10.22038/ijbms.2021.45358.10554.
  • Kim, C. H., J. H. Kim, J. Lee, and Y. S. Ahn. 2003. Zinc-induced NF-kappa B inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol. App. l Pharmacol. 190:189–96. doi:10.1016/s0041-008x(03)00167-4.
  • Kumar, R., P. S. Deshmukh, S. Sharma, and B. D. Banerjee. 2021. Effect of mobile phone signal radiation on epigenetic modulation in the hippocampus of Wistar rat. Environ. Res. 192:110297. doi:10.1016/j.envres.2020.110297.
  • Liao, G., J. Tang, D. Wang, H. Zuo, Q. Zhang, Y. Liu, and H. Xiong. 2020. Selenium nanoparticles (SeNps) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J. Surg. Oncol 18:81. doi:10.1186/s12957-020-01850-7.
  • López-Furelos, A., A. A. Salas-Sánchez, F. J. Ares-Pena, J. M. Leiro-Vidal, and E. López-Martín. 2018. Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line. Int. J. Radiat. Biol. 94:607–18. doi:10.1080/09553002.2018.1465610.
  • Luo, J., N. C. Deziel, H. Huang, Y. Chen, X. Ni, S. Ma, R. Udelsman, and Y. Zhang. 2019. Cell phone use and risk of thyroid cancer: A population-based case-control study in Connecticut. Ann. Epidemiol. 29:39–45. doi:10.1016/j.annepidem.2018.10.004.
  • Montalto, F. I., and F. De Amicis. 2020. Cyclin D1 in cancer: A molecular connection for cell cycle control, adhesion and ınvasion in tumor and stroma. Cells 9:2648. doi:10.3390/cells9122648.
  • Ozgur, E., H. Kayhan, G. Kismali, F. Senturk, M. Sensoz, G. G. Ozturk, and T. Sel. 2021. Effects of radiofrequency radiation on colorectal cancer cell proliferation and inflammation. Turk. J. Of Biochem 46:525–32. doi:10.1515/tjb-2020-0148.
  • Panagopoulos, D. J., A. Karabarbounis, and L. H. Margaritis. 2002. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102. doi:10.1016/s0006-291x(02)02393-8.
  • Park, S. H., J. H. Kim, S. W. Nam, B. W. Kim, G. Y. Kim, W. J. Kim, and Y. H. Choi. 2014. Selenium improves stem cell potency by stimulating the proliferation and active migration of 3T3-L1 preadipocytes. Int. J. Oncol. 44:336–42. doi:10.3892/ijo.2013.2182.
  • Pastacı Ozsobacı, N., D. Duzgun Ergun, S. Durmus, M. Tuncdemir, H. Uzun, R. Gelisgen, and D. Ozcelik. 2018. Selenium supplementation ameliorates electromagnetic field-induced oxidative stress in the HEK293 cells. J. Trace Elem. Med. Biol. 50:572–79. doi:10.1016/j.jtemb.2018.04.008.
  • Piastowska-Ciesielska, A. W., M. Gajewska, W. Wagner, K. Domińska, and T. Ochędalski. 2014. Modulatory effect of selenium on cell-cycle regulatory genes in the prostate adenocarcinoma cell line. J. Appl. Biomed. 12:87–95. doi:10.1016/j.jab.2013.02.002.
  • Sahin, D., E. Ozgur, G. Guler, A. Tomruk, I. Unlu, A. Sepici-Dincel, and N. Seyhan. 2016. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain. J. Chem. Neuroanat. 75:94–98. doi:10.1016/j.jchemneu.2016.01.002.
  • Shimura, T., M. Fukumoto, and N. Kunugita. 2013. The role of cyclin D1 in response to long-term exposure to ionizing radiation. Cell. Cycle 12:2738–43. doi:10.4161/cc.25746.
  • Tugarova, A. V., P. V. Mamchenkova, Y. A. Dyatlova, and A. A. Kamnev. 2018. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 5:458–63. doi:10.1016/j.saa.2017.11.050.
  • Wetherell, D., G. S. Baldwin, A. Shulkes, D. Bolton, J. Ischia, and O. Patel. 2018. Zinc ion dyshomeostasis increases resistance of prostate cancer cells to oxidative stress via upregulation of HIF1α. Oncotarget 9:8463–77. doi:10.18632/oncotarget.23893.
  • Winkler, H. C., M. Suter, and H. Naegeli. 2016. Critical review of the safety assessment of nano-structured silica additives in food. J. Nanobiotechnol 14:44. doi:10.1186/s12951-016-0189-6.
  • Yavas, M. C., Y. Yegin, S. Oruc, K. Delen, and B. Sirav. 2021. Analysis of thiol/disulphide homeostasis and oxidant-antioxidant status as a result of exposure to radio-frequency electromagnetic fields. Electromagn Biol. Med 40:84–91. doi:10.1080/15368378.2021.1874970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.