92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer

ORCID Icon & ORCID Icon
Pages 163-181 | Received 21 Feb 2023, Accepted 26 Oct 2023, Published online: 29 Dec 2023

References

  • Abdel‐Haleem, M. R., T. Abouelnaga, M. Abo‐Zahhad, and S. M. Ahmed. 2021. Enhancing microwave breast cancer hyperthermia therapy efficiency utilizing fat grafting with horn antenna. Int. J. RF Microw Comput. Aided Eng 31:e22651. doi:10.1002/mmce.22651.
  • Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. AISSA, L. Azpilicueta, C. H. See, A. A. Althuwayb, I. Huynen, R. A. Abd-Alhameed, F. Falcone, et al. 2020. A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”. IEEE Access 8:192965–3004. doi:10.1109/ACCESS.2020.3032826.
  • Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti. 2018. A novel monofilar‐Archimedean metamaterial inspired leaky‐wave antenna for scanning application for passive radar systems. Microw Opt. Technol. Lett. 60:2055–2060. doi:10.1002/mop.31300.
  • Althuwayb, A. A., M. Alibakhshikenari, B. S. Virdee, H. Benetatos, F. Falcone, and E. Limiti. 2021. Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics 10:1120. doi:10.3390/electronics10091120.
  • Bahl, I. J., S. S. Stuchly, and M. A. Stuchly. 1980. New microstrip slot radiator for medical applications. Electron. Lett. 16731–32. doi:10.1049/el:19800520.
  • Balanis, C. A. 2021. Antenna theory and applications. 4th editions ed. Singapore: John Wiley & Sons.
  • Broschat, S. L., C. K. Chou, K. H. Luk, A. W. Guy, and A. Ishimaru. 1988. An insulated dipole applicator for intracavitary hyperthermia. IEEE Trans. Biomed. Eng. 35:173–178. doi:10.1109/10.1359.
  • Chen, H., K. Wang, D. Zhibo, W. Liu, and Z. Liu. 2021. Predicting the thermosphysical properties of skin tumor based on the surface temperature and deep learning. Int. J. Heat Mass Tran. 180:121804. doi:10.1016/j.ijheatmasstransfer.2021.121804.
  • Chung, C., R. N. Hyang-In, A. Kim, and R. N. Young. 2022. Perception of cosmetic surgery and associated side effects: A content analysis study of South Korean female college students. Medicine 101:e28641. doi:10.1097/MD.0000000000028641.
  • Costanzo, V. C., and A. M. Qureshi. 2021. A Borgia, gel-like human -mediaking phantoms: Realization procedure, dielectric characterization and experimental validations on microwave wearable body sensors. Biosensors 11:11. doi:10.3390/bios11040111.
  • Geyikoglu, M. D., and B. Cavusoglu. 2021. Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays. Electromagn. Biol. Med. 40:353–360. doi:10.1080/15368378.2021.1965069.
  • Geyikoglu, M. D., and B. Cavusoglu. 2022. Microwave hyperthermia with X band flexible hyperthermia applicator for bone and joint cancer treatment. J. Electromagn. Waves Appl. 1–14. doi:10.1080/09205071.2021.2020691.
  • Gupta, A., A. Kansal, and P. Chawla. 2023. Design of a wideband patch antenna and performance enhancement using an AMC reflector surface for on-body communication at 2.45 GHz. Int. J. Electron. 110:1121–1136. doi:10.1080/00207217.2022.2068664.
  • Habash, R. W. Y., R. Bansal, D. Krewski, and H. T. Alhafid. 2006. Thermal therapy, part 2: Hyperthermia techniques. Crit. Rev. Biomed. Eng. 34:491–542. doi:10.1615/CritRevBiomedEng.v34.i6.30.
  • Hazarika, B., B. Basu, and A. Nandi. 2020. Design of antennas using artificial magnetic conductor layer to improve gain, flexibility, and specific absorption rate. Microw Opt. Technol. Lett. 62:3928–35. doi:10.1002/mop.32531.
  • Ibanez-Labiano, I., and A. Alomainy. 2020. Dielectric characterization of non-conductive fabrics for temperature sensing through resonating antenna structures. Materials 13:1271. doi:10.3390/ma13061271.
  • IT’IS Foundation (2010-2022), Available from: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/
  • Kaur, K., and A. Kaur. 2021. Fractal geometry based CPW fed antenna for early stage skin cancer detection. In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP): 517–20. IEEE. doi: 10.1109/InCAP52216.2021.9726481
  • Kaur, K., and A. Kaur.2022a. Archimedes spiral antenna for the microwave hyperthermia application. In 2022 3rd International Conference on Smart Electronics and Communication ICOSEC, Trichy, India, 590–94. IEEE.
  • Kaur, K., and A. Kaur. 2022b. In vitro detection of skin cancer using an UWB stacked micro strip patch antenna with microwave imaging. Int. J. RF Mic. Comp-Aid Eng. 32:e23407. doi:10.1002/mmce.23407.
  • Kaur, K., and A. Kaur. 2022c. Polarization independent frequency selective surface for marine and air traffic radar applications. Sādhanā 47:1–11. doi:10.1007/s12046-022-01840-3.
  • Khan, A., S. K. Dubey, and A. K. Singh. 2023. Slot-loaded pentagon microstrip patch antenna for hyperthermia application at 434 MHz. MAPAN 38:1–9. doi:10.1007/s12647-023-00668-4.
  • Khan, A., and A. K. Singh. 2023. Sar analysis of hexagonal-shaped slot-loaded patch antenna for hyperthermia application at 434 MHz. Prog. Electromagn. Res. Lett. 109:119–25. doi:10.2528/PIERL23022002.
  • Koo, Y. S., R. Kazemi, Q. Liu, J. C. Phillips, and A. E. Fathy. 2014. Development of a high SAR conformal antenna for hyperthermia tumors treatment. Ieee T. Antenn. Propag. 62:5830–5840. doi:10.1109/TAP.2014.2357419.
  • Korkmaz, E., O. Isik, and M. Ahmed Nassor. 2013. A compact micro strip spiral antenna embedded in water bolus for hyperthermia applications. Int. J. Antennas. Propag. 2013:1–6. doi:10.1155/2013/954986.
  • Lehmann, J. F., A. W. Guy, J. B. Stonebridge, and B. J. Lateur. 1978. Evaluation of a therapeutic direct-contact 915-MHz microwave applicator for effective deep-tissue heating in humans. IEEE Trans. Microwave Theory Techn. 26:556–63. doi:10.1109/TMTT.1978.1129438.
  • Meaney, P. M., C. J. Fox, S. D. Geimer, and K. D. Paulsen. 2017. Electrical characterization of glycerin: Water mixtures: Implications for use as a coupling medium in microwave tomography. IEEE Trans. Microw. Theory Tech. 65:1471–1478. doi:10.1109/TMTT.2016.2638423.
  • Mirbeik-Sabzevari, N. T. 2019. Ultrawideband, stable normal and cancer skin tissue phantoms for millimeter-wave skin cancer imaging. IEEE Trans. Biomed. Eng. 66:176–86. doi:10.1109/TBME.2018.2828311.
  • Nadeem, I., M. Alibakhshikenari, F. Babaeian, A. A. Althuwayb, B. S. Virdee, L. Azpilicueta, S. Khan, I. Huynen, F. Falcone, T. A. Denidni, et al. 2021. A comprehensive survey on ‘circular polarized antennas’ for existing and emerging wireless communication technologies. J. Phys. D: Appl. Phys. 55:033002. doi:10.1088/1361-6463/ac2c36.
  • Nurgali, K., R. T. Jagoe, and R. Abalo. 2018. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae. Front Pharmacol. 9:245. doi:10.3389/fphar.2018.00245.
  • Rajebi, S., C. Ghobadi, J. Nourinia, and E. Mostafapour. 2020. SAR enhancement of slot microstrip antenna by using silicon layer in hyperthermia applications. Wireless Pers. Commun. 111:1761–74. doi:10.1007/s11277-019-06955-1.
  • Richard, C. J. 2015. Antenna engineering handbook. third ed. Mc-Graw Hill publishing company.
  • Rogers, H. W., M. A. Weinstock, S. R. Feldman, and B. M. Coldiron. 2015. Incidence estimate of non-melanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA dermatol. 151:1081–86. doi:10.1001/jamadermatol.2015.1187.
  • Sarkhel, A., S. Ranjan, and B. Chaudhuri. 2017. Compact quad-band polarization insensitive ultrathin metamaterial absorber with wide angle stability. IEEE Ant Wireless Propag. Lett. 16:3240–44. doi:10.1109/LAWP.2017.2768077.
  • Silva, A. B. C., J. Laszczyk, and C. Luiz, F. L. R. Wrobel, and A. J. Nowak. 2016. A thermoregulation model for hypothermic treatment of neonates. Med. Eng. Phys. 38:988–998. doi:10.1016/j.medengphy.2016.06.018. 9
  • Singh Soni, B. S., and S. P. Singh. 2016. Conformal microstrip slot antenna with an AMC reflector for hyperthermia. J. Electromagn. Waves Appl. 30:1603–19. doi:10.1080/09205071.2016.1207568.
  • Singh Soni, B. S., and S. P. Singh. 2018. Bi-layered/tri-layered bio-media in direct contact with metal diagonal horn for hyperthermia. Int. J. Microw. Wirel. Technol. 10:921–32. doi:10.1017/S1759078718000739.
  • Svein, J., H. O. Rolfsnes, and R. S. Paul. 2005. Characteristics of microstrip muscle-loaded single-arm archimedean spiral antennas as investigated by FDTD numerical computations. IEEE Trans. Biomed. Eng. 52:321–30. doi:10.1109/TBME.2004.840502.
  • Tharrini Rajendran, K. A. 2021. Microwave intracavitary applicator using 434 MHz conformal patch antennas for hyperthermia treatment of gynaecological cancers. IET Microw Anten. Propagat. 15:1117‐1126. doi:10.1049/mia2.12122.
  • Vrba, D., D. Rodrigues, J. Vrba (Jr.), and P. R. Stauffer. 2016. Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments. Prog. Electromagn. Res. 156:1–12. doi:10.2528/PIER16012702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.