107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal damage map prediction during irreversible electroporation with U-Net

Pages 182-192 | Received 06 Apr 2023, Accepted 20 Dec 2023, Published online: 29 Dec 2023

References

  • AboElenein, N. M., S. Piao, A. Noor, and P. Noman Ahmed. 2022. MIRAU-Net: An improved neural network based on U-Net for gliomas segmentation. Signal Proces. Image Commun. 101:116553. doi:10.1016/j.image.2021.116553.
  • Adeyanju, O., H. Al-Angari, and A. Sahakian. 2012. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol. Oncol. 46:126–35. doi:10.2478/v10019-012-0026-y.
  • Agnass, P., K. P. van Lienden, T. M. van Gulik, M. G. Besselink, J. Crezee, and H. Petra Kok. 2022. Improving prediction of the potential distribution induced by cylindrical electrodes within a homogeneous rectangular grid during irreversible electroporation. Appl. Sci. 12:1471. doi:10.3390/app12031471.
  • Chao, X., and L. Yang. 2021. “Conductivity variation during irreversible electroporation.” In E3S Web of Conferences, Dali, China, May 21–23, 2021, 271. EDP Sciences.
  • Chu, D.-T., T. Tien Nguyen, N. Le Bao Tien, D.-K. Tran, J.-H. Jeong, P. Gia Anh, V. Van Thanh, D. Tien Truong, and T. Chu Dinh. 2020. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells 9:563. doi:10.3390/cells9030563.
  • Daniels, C., and B. Rubinsky. 2009. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues. J. Biomech. Eng. 131. doi:10.1115/1.3156808.
  • Davalos, R. V., and B. Rubinsky. 2008. Temperature considerations during irreversible electroporation. Int. J. Heat Mass. Tran. 51:5617–22. doi:10.1016/j.ijheatmasstransfer.2008.04.046.
  • de Martel, C., D. Georges, F. Bray, J. Ferlay, and G. M. Clifford. 2020. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 8:e180–90. doi:10.1016/S2214-109X(19)30488-7.
  • Diaby, V., R. Tawk, V. Sanogo, H. Xiao, and A. J. Montero. 2015. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer. Breast Cancer Res. Treat. 151:27–40. doi:10.1007/s10549-015-3383-6.
  • Edd, J. F., and R. V. Davalos. 2007. Mathematical modeling of irreversible electroporation for treatment planning. Technol. Cancer Res. Treat. 6:275–86. doi:10.1177/153303460700600403.
  • Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C. Weaver. 2007. Towards solid tumor treatment by Irreversible Electroporation: Intrinsic redistribution of fields and currents in tissue. Technol. Cancer Res. Treat. 6:261–73. doi:10.1177/153303460700600402.
  • Firoozabadi, S. M. 2017. Finite element analysis of tissue conductivity during high-frequency and low-voltage irreversible electroporation. Iran. J. Med. Phys. 14:135–40.
  • Garcia, P. A., R. V. Davalos, D. Miklavcic, and B. Rubinsky. 2014. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 9:e103083. doi:10.1371/journal.pone.0103083.
  • Gudvangen, E., V. Kim, V. Novickij, F. Battista, and A. G. Pakhomov. 2022. Electroporation and cell killing by milli-to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci. Rep. 12:1–15. doi:10.1038/s41598-022-04868-x.
  • Khorasani, A. 2020a. The effect of conductivity changes on temperature rise during irreversible electroporation. Front. Biomed. Technol. 7:178–85. doi:10.18502/fbt.v7i3.4620.
  • Khorasani, A. 2020b. A numerical study on the effect of conductivity change in cell kill distribution in irreversible electroporation. Polish J. Med. Phys. Eng. 26:69–76. doi:10.2478/pjmpe-2020-0008.
  • Khorasani, A. 2021a. Clinical usage of tissue electrical conductivity during the electroporation: An essential and useful factor. Front. Biomed. Technol. 8:61–69. doi:10.18502/fbt.v8i1.5859.
  • Khorasani, A. 2021b. Finite element analysis of cell killing probability in electroporation with single bipolar electrode. Front. Biomed. Technol. 8:20–25. doi:10.18502/fbt.v8i1.5854.
  • Khorasani, A. 2022. Automated irreversible electroporated region prediction using deep neural network, a preliminary study for treatment planning. Electromagn Biol. Med. 41:379–88. doi:10.1080/15368378.2022.2114493.
  • Khorasani, A., S. M. Firoozabadi, and Z. Shankayi. 2018. Conductivity changes of liver tissue during irreversible electroporation and calculation of the electric field distribution. Modares J. Biotechnol. 9:227–32.
  • Khorasani, A., S. M. Firoozabadi, and Z. Shankayi. 2019. Conductivity change with needle electrode during high frequency irreversible electroporation: A finite element study. Polish J. Med. Phys. Eng. 25:237–42. doi:10.2478/pjmpe-2019-0031.
  • Khorasani, A., R. Kafieh, M. Saboori, and M. B. Tavakoli. 2022. Glioma segmentation with DWI weighted images, conventional anatomical images, and post-contrast enhancement magnetic resonance imaging images by U-Net. Phys. Eng. Sci. Med. 45:925–34. doi:10.1007/s13246-022-01164-w.
  • Kihira, S., X. Mei, K. Mahmoudi, Z. Liu, S. Dogra, P. Belani, N. Tsankova, A. Hormigo, Z. A. Fayad, and A. Doshi. 2022. U-Net based segmentation and characterization of gliomas. Cancers 14:4457. doi:10.3390/cancers14184457.
  • Kranjc, M., B. Markelc, F. Bajd, M. Čemažar, I. Serša, T. Blagus, and D. Miklavčič. 2015. In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 274:115–23. doi:10.1148/radiol.14140311.
  • Lavee, J., G. Onik, P. Mikus, and B. Rubinsky. 2007. A novel nonthermal energy source for surgical epicardial atrial ablation: Irreversible electroporation. In Heart surgery forum, vol. 10, E162–7. Forum MUltimedia Publishing.
  • Liu, Q., K. Liu, A. Bolufé-Röhler, J. Cai, and H. Ling. 2022. Glioma segmentation of optimized 3D U-Net and prediction of multi-modal survival time. Neural. Comput. Appl. 34:211–25. doi:10.1007/s00521-021-06351-6.
  • Piñeros, M., L. Mery, I. Soerjomataram, F. Bray, and E. Steliarova-Foucher. 2021. Scaling up the surveillance of childhood cancer: A global roadmap. JNCI J. Nat. Cancer Inst. 113:9–15. doi:10.1093/jnci/djaa069.
  • Tasu, J.-P., D. Tougeron, and M.-P. Rols. 2022. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn. Interv. Imaging 103:499–509. doi:10.1016/j.diii.2022.09.009.
  • Vanneman, M., and G. Dranoff. 2012. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12:237–51. doi:10.1038/nrc3237.
  • Wardhana, G., N. M. Raman, M. Abayazid, J. J. Fütterer, T. Akahoshi, M. Eto, and J. Arata. 2022. 2.5-mm articulated endoluminal forceps using a compliant mechanism. Int. J. Comput. Assist. Radiol. Surg. 18:1–8. doi:10.1007/s11548-022-02726-9.
  • Yang, Z., K. Lafata, E. Vaios, H. Zongsheng, T. Mullikin, F.-F. Yin, and C. Wang. 2022. Quantifying U-Net uncertainty in multi-parametric MRI-Based glioma segmentation by spherical image projection. Med. Phys., ArXiv Preprint ArXiv:2210.06512. doi:10.1002/mp.16695.
  • Zhao, Y., S. Bhonsle, S. Dong, L. Yanpeng, H. Liu, A. Safaai-Jazi, R. V. Davalos, and C. Yao. 2017. Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning. IEEE Trans. Biomed. Eng. 65:1810–19. doi:10.1109/TBME.2017.2778101.
  • Zugazagoitia, J., C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo, and L. Paz-Ares. 2016. Current challenges in cancer treatment. Clin. Ther. 38:1551–66. doi:10.1016/j.clinthera.2016.03.026.
  • Zupanic, A., B. Kos, and D. Miklavcic. 2012. Treatment planning of electroporation-based medical interventions: Electrochemotherapy, Gene Electrotransfer and Irreversible electroporation. Phys. Med. Biol. 57:5425. doi:10.1088/0031-9155/57/17/5425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.