376
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Introducing a new hybrid surface strut-based lattice structure with enhanced energy absorption capacity

ORCID Icon, ORCID Icon &
Pages 2955-2964 | Received 29 Sep 2022, Accepted 08 Jan 2023, Published online: 18 Jan 2023

References

  • A. Farrokhabadi, H. Veisi, H. Gharehbaghi, J. Montesano, A.H. Behravesh and S.K. Hedayati, Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures, Mech. Adv. Mater. Struct., vol. 2021, pp. 1–12, 2021. DOI: 10.1080/15376494.2021.2023919.
  • A. Farrokhabadi, M.M. Ashrafian, H. Gharehbaghi and R. Nazari, Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods, Compos. Struct., vol. 275, pp. 114410, 2021.
  • G. Lj and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1997.
  • Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng, C. Shen, B. Han, X. Zhang, F. Jin, F. Xu and T.J. Lu, Bioinspired engineering of honeycomb structure: Using nature to inspire human innovation, Prog. Mater. Sci., vol. 74, pp. 332–400, 2015. DOI: 10.1016/j.pmatsci.2015.05.001.
  • Z. Wang, Recent advances in novel metallic honeycomb structure, Compos. B: Eng., vol. 166, pp. 731–741, 2019. DOI: 10.1016/j.compositesb.2019.02.011.
  • H. Ramos, R. Santiago, S. Soe, P. Theobald and M. Alves, Response of gyroid lattice structures to impact loads, Int. J. Impact Eng., vol. 164, pp. 104202, 2022.
  • J. J. Andrew, J. Schneider, J. Ubaid, R. Velmurugan, N.K. Gupta and S. Kumar, Energy absorption characteristics of additively manufactured plate-lattices under low-velocity impact loading, Int. J. Impact Eng., vol. 149, pp. 103768, 2021.
  • B. Nagesha, V. Dhinakaran, M.V. Shree, K.P. Manoj Kumar, D. Chalawadi and T. Sathish, Review on characterization and impacts of the lattice structure in additive manufacturing, Mater. Today: Proc., vol. 21, pp. 916–919, 2020.
  • V. Kumar, G. Manogharan, and D. R. Cormier, Design of periodic cellular structures for heat exchanger applications. In: 2009 International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, 2009.
  • P. F. Egan, V.C. Gonella, M. Engensperger, S.J. Ferguson and K. Shea, Computationally designed lattices with tuned properties for tissue engineering using 3D printing, PLoS One, vol. 12, no. 8, pp. e0182902, 2017. DOI: 10.1371/journal.pone.0182902.
  • D. Kong, F. Fan, and X. Zhi, Seismic performance of single-layer lattice shells with VF-FPB, Int. J. Steel Struct., vol. 14, no. 4, pp. 901–911, 2014. DOI: 10.1007/s13296-014-1220-0.
  • L. Xiao, G. Feng, S. Li, K. Mu, Q. Qin and W. Song, Mechanical characterization of additively-manufactured metallic lattice structures with hollow struts under static and dynamic loadings, Int. J. Impact Eng., vol. 169, pp. 104333, 2022.
  • Z. P. Sun, Y. B. Guo, and V. P. W. Shim, Influence of printing direction on the dynamic response of additively-manufactured polymeric materials and lattices, Int. J. Impact Eng., vol. 167, pp. 104263, 2022.
  • A. P. Meran, T. Toprak, and A. Muğan, Numerical and experimental study of crashworthiness parameters of honeycomb structures, Thin Wall. Struct., vol. 78, pp. 87–94, 2014. DOI: 10.1016/j.tws.2013.12.012.
  • S. Xu, J.H. Beynon, D. Ruan and G. Lu, Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs, Compos. Struct., vol. 94, no. 8, pp. 2326–2336, 2012. DOI: 10.1016/j.compstruct.2012.02.024.
  • Y. Zhang, T. Liu, H. Ren, I. Maskery and I. Ashcroft, Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures, Compos. Struct., vol. 195, pp. 45–59, 2018. DOI: 10.1016/j.compstruct.2018.04.021.
  • T. D. Ngo, A. Kashani, G. Imbalzano, K.T.Q Nguyen and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B: Eng., vol. 143, pp. 172–196, 2018.
  • G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans and A.A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des., vol. 49, pp. 957–965, 2013.
  • Y. Duan, B. Du, X. Shi, B. Hou and Y. Li, Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells, Int. J. Impact Eng., vol. 132, pp. 103303, 2019.
  • I. Ullah, M. Brandt, and S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures, Mater. Des., vol. 92, pp. 937–948, 2016.
  • N. Jin, F. Wang, Y. Wang, B. Zhang, H. Cheng and H. Zhang, Failure and energy absorption characteristics of four lattice structures under dynamic loading, Mater. Des., vol. 169, pp. 107655, 2019.
  • T. Tancogne-Dejean, A. B. Spierings, and D. Mohr, Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater., vol. 116, pp. 14–28, 2016. DOI: 10.1016/j.actamat.2016.05.054.
  • J. Monteiro, M. Sardinha, F. Alves, A.R. Ribeiro, L. Reis, A.M. Deus, M. Leite and M.F. Vaz, Evaluation of the effect of core lattice topology on the properties of sandwich panels produced by additive manufacturing, Proc. Inst. Mech. Eng. Part L: J. Mater.: Design Appl., vol. 235, no. 6, pp. 1312–1324, 2021. DOI: 10.1177/1464420720958015.
  • L. Han and S. Che, An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self‐assembled systems, Adv. Mater., vol. 30, no. 17, pp. 1705708, 2018. DOI: 10.1002/adma.201705708.
  • N. Thomas, N. Sreedhar, O. Al-Ketan, R. Rowshan, R.K.A. Al-Rub and H. Arafat, 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation, Desalination, vol. 443, pp. 256–271, 2018. DOI: 10.1016/j.desal.2018.06.009.
  • D.-J. Yoo, Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces, Int. J. Precis. Eng. Manuf., vol. 12, no. 1, pp. 61–71, 2011. DOI: 10.1007/s12541-011-0008-9.
  • P. J. Gandy, S. Bardhan, A.L. Mackay and J. Klinowski, Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces, Chem. Phys. Lett., vol. 336, no. 3–4, pp. 187–195, 2001. DOI: 10.1016/S0009-2614(00)01418-4.
  • M.M. Sychov, L.A. Lebedev, S.V. Dyachenko and L.A. Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronaut. (UK), vol. 150, pp. 81–84, 2018. DOI: 10.1016/j.actaastro.2017.12.034.
  • H. Yin, Z. Liu, J. Dai, G. Wen and C. Zhang, Crushing behavior and optimization of sheet-based 3D periodic cellular structures, Compos. B: Eng., vol. 182, pp. 107565, 2020.
  • I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck and I.A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Addit. Manuf., vol. 16, pp. 24–29, 2017. DOI: 10.1016/j.addma.2017.04.003.
  • M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi and F. Berto, Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication, Mater. Sci. Eng.: R: Rep., vol. 144, pp. 100606, 2021.
  • A. Oliveira, L. Reis, M. Leite, F. Alves, A.M. de Deus, M. Sardinha and M.F. Vaz, Evaluation of cellular structures with triply periodic minimal surfaces fabricated by additive manufacturing, Eng. Manuf. Lett., vol. 1, no. 1, pp. 28–33, 2022. DOI: 10.24840/2795-5168_001-001_0006.
  • A. Kumar, L. Collini, A. Daurel and J.-Y. Jeng, Design and additive manufacturing of closed cells from supportless lattice structure, Addit. Manuf., vol. 33, pp. 101168, 2020.
  • L. Li, F. Yang, P. Li, W. Wu and L. Wang, A novel hybrid lattice design of nested cell topology with enhanced energy absorption capability, Aerosp. Sci. Technol., vol. 128, pp. 107776, 2022.
  • T. A. Connor, J.M. Clark, J. Jayamohan, M. Stewart, A. McGoldrick, C. Williams, B.M Seemungal, R. Smith, R. Burek and M.D Gilchrist, Do equestrian helmets prevent concussion? A retrospective analysis of head injuries and helmet damage from real-world equestrian accidents, Sports Med. Open, vol. 5, no. 1, pp. 19, 2019.
  • H. Gharehbaghi, M. Sadeghzade, and A. Farrokhabadi, Introducing the new lattice structure based on the representative element double octagonal bipyramid, Aerosp. Sci. Technol., vol. 121, pp. 107383, 2022.
  • M. Sadeghzade, H. Gharehbaghi, and A. Farrokhabadi, Experimental and analytical studies of mechanical properties of additively manufactured lattice structure based on octagonal bipyramid cubic unit cell, Addit. Manuf., vol. 48, pp. 102403, 2021.
  • C. Qi, F. Jiang, S. Yang and A. Remennikov, Multi-scale characterization of novel re-entrant circular auxetic honeycombs under quasi-static crushing, Thin Wall. Struct., vol. 169, pp. 108314, 2021.
  • M. Hajianmaleki and M. S. Qatu, Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions, Compos. B: Eng., vol. 43, no. 4, pp. 1767–1775, 2012. DOI: 10.1016/j.compositesb.2012.01.019.
  • M. Tomanik, M. Żmudzińska, and M. Wojtków, Mechanical and structural evaluation of the PA12 desktop selective laser sintering printed parts regarding printing strategy, 3D Print. Addit. Manuf., vol. 8, no. 4, pp. 271–279, 2021. DOI: 10.1089/3dp.2020.0111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.