164
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Non-linear buckling analysis of MWCNT reinforced hybrid composite shell subjected to hydrostatic pressure: A numerical and experimental investigation

& ORCID Icon
Pages 2965-2979 | Received 29 Oct 2022, Accepted 06 Jan 2023, Published online: 19 Jan 2023

References

  • P.D. Mangalgiri, Composite materials for aerospace applications, Bull. Mater. Sci., vol. 22, no. 3, pp. 657–664, 1999. DOI: 10.1007/BF02749982.
  • S.M. Halliwell, Polymer Composites in Construction, CRC Press, London, 2000.
  • M.S. Qatu, R.W. Sullivan, and W. Wang, Recent research advances on the dynamic analysis of composite shells, Compos. Struct., vol. 93, no. 1, pp. 14–31, 2010. DOI: 10.1016/j.compstruct.2010.05.014.
  • C. Bisagni, Numerical analysis and experimental correlation of composite shell buckling and post-buckling, Compos. B, Eng., vol. 31, no. 8, pp. 655–667, 2000. DOI: 10.1016/S1359-8368(00)00031-7.
  • J. Huang and G. Zeng, Finite-element strength and stability analysis and experimental studies of a submarine-launched missile’s composite dome, Eng. Struct., vol. 22, no. 9, pp. 1189–1194, 2000. DOI: 10.1016/S0141-0296(99)00040-1.
  • V. Ragavan and A.M. Made, Nonlinear stability of ring-stiffened prestressed domes, J. Struct. Eng., vol. 126, no. 7, pp. 838–843, 2000. DOI: 10.1061/(ASCE)0733-9445(2000)126:7(838).
  • H.R. Meyer-Piening, M. Farshad, B. Geier, and R. Zimmermann, Buckling loads of CFRP composite cylinders under combined axial and torsion loading–experiments and computations, Compos. Struct., vol. 53, no. 4, pp. 427–435, 2001. DOI: 10.1016/S0263-8223(01)00053-8.
  • V. Carvelli, N. Panzeri, and C. Poggi, Buckling strength of GFRP under-water vehicles, Compos. B, Eng., vol. 32, no. 2, pp. 89–101, 2001. DOI: 10.1016/S1359-8368(00)00063-9.
  • C.T.F. Ross, P. Youster, and R. Sadler, The buckling of plastic oblate hemi-ellipsoidal dome shells under external hydrostatic pressure, Ocean Eng., vol. 28, no. 7, pp. 789–803, 2001. DOI: 10.1016/S0029-8018(00)00035-4.
  • C.T.F. Ross, B.H. Huat, T.B. Chei, C.M. Chong, and M.D.A. Mackney, The buckling of GRP hemi-ellipsoidal dome shells under external hydrostatic pressure, Ocean Eng., vol. 30, no. 5, pp. 691–705, 2003. DOI: 10.1016/S0029-8018(02)00039-2.
  • Z. Cui, G. Moltschaniwskyj, and D. Bhattacharyya, Buckling and large deformation behaviour of composite domes compressed between rigid platens, Compos. Struct., vol. 66, no. 1–4, pp. 591–599, 2004. DOI: 10.1016/j.compstruct.2004.05.007.
  • T. Hong and J.G. Teng, Imperfection sensitivity and post-buckling analysis of elastic shells of revolution, Thin-Walled Struct., vol. 46, no. 12, pp. 1338–1350, 2008. DOI: 10.1016/j.tws.2008.04.001.
  • J. Błachut, Buckling of multilayered metal domes, Thin-Walled Struct., vol. 47, no. 12, pp. 1429–1438, 2009. DOI: 10.1016/j.tws.2009.07.011.
  • F. Shadmehri, S.V. Hoa, and M. Hojjati, Buckling of conical composite shells, Compos. Struct., vol. 94, no. 2, pp. 787–792, 2012. DOI: 10.1016/j.compstruct.2011.09.016.
  • D.H. Bich, D.G. Ninh, and T.I. Thinh, Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects, Compos. B: Eng., vol. 87, pp. 75–91, 2016. DOI: 10.1016/j.compositesb.2015.10.021.
  • E. Verwimp, T. Tysmans, M. Mollaert, and S. Berg, Experimental and numerical buckling analysis of a thin TRC dome, Thin-Walled Struct., vol. 94, pp. 89–97, 2015. DOI: 10.1016/j.tws.2015.03.021.
  • J. Błachut, Locally flattened or dented domes under external pressure, Thin-Walled Struct., vol. 97, pp. 44–52, 2015. DOI: 10.1016/j.tws.2015.08.022.
  • J. Błachut, Buckling of composite domes with localized imperfections and subjected to external pressure, Compos. Struct., vol. 153, pp. 746–754, 2016. DOI: 10.1016/j.compstruct.2016.07.007.
  • J. Błachut, Composite spheroidal shells under external pressure, Int. J. Comput. Methods Eng. Sci. Mech., vol. 18, no. 1, pp. 2–12, 2017. DOI: 10.1080/15502287.2016.1276336.
  • H. Sina and B. Samali, Buckling analysis of laminated composite curved panels reinforced with linear and non-linear distribution of shape memory alloys, Thin-Walled Struct., vol. 106, pp. 9–17, 2016. DOI: 10.1016/j.tws.2016.04.022.
  • V.S. Kathavate, D.N. Pawar, and A.S. Adkine, A multi-level damage and creep behaviour of material subjected to high pressure: Metal versus composites – A micromechanics approach, Proc, Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 233, no. 3, pp. 772–786, 2019. DOI: 10.1177/0954406217739040.
  • V.S. Kathavate, K. Amudha, L. Adithya, A. Pandurangan, N.R. Ramesh, and K. Gopakumar, Mechanical behavior of composite materials for marine applications – An experimental and computational approach, J. Mech. Behav. Mater., vol. 27, no. 1–2, pp. 1–22, 2018. DOI: 10.1515/jmbm-2018-0003.
  • V.S. Kathavate, K. Amudha, N.R. Ramesh, and G.A. Ramadass, Failure analysis of composite material under external hydrostatic pressure: A nonlinear approach, Mater. Today: Proc., vol. 5, no. 11, pp. 24299–24312, 2018. DOI: 10.1016/j.matpr.2018.10.225.
  • H.N.R. Wagner, C. Huhne, J. Zhang, and W. Tang, On the imperfection sensitivity and design of spherical domes under external pressure, Int. J. Press. Vessels Pip., vol. 179, p. 104015, 2020. DOI: 10.1016/j.ijpvp.2019.104015.
  • M.H. Hajmohammad, A. Tabatabaeian, A. R. Ghasemi, and F. Taheri-Behrooz, A novel detailed analytical approach for determining the optimal design of FRP pressure vessels subjected to hydrostatic loading: Analytical model with experimental validation, Compos. B: Eng., vol. 183, p. 107732, 2020. DOI: 10.1016/j.compositesb.2019.107732.
  • M. Imran, D. Shi, L. Tong, H.M. Waqas, R. Muhammad, M. Uddin and A. Khan, Design optimization and non-linear buckling analysis of spherical composite submersible pressure hull, Materials, vol. 13, no. 11, p. 2439, 2020. DOI: 10.3390/ma13112439.
  • J. Błachut, Impact of local and global shape imperfections on buckling of externally pressurized domes, Int. J. Press. Vessels Pip., vol. 188, p. 104178, 2020. DOI: 10.1016/j.ijpvp.2020.104178.
  • Y. Wang, W. Tang, J. Zhang, S. Zhang, and Y. Chen, Buckling of imperfect spherical caps with fixed boundary under uniform external pressure, Mar. Struct., vol. 65, pp. 1–11, 2019. DOI: 10.1016/j.marstruc.2019.01.004.
  • Y. Wang, J. Zhang, and W. Tang, Buckling performances of spherical caps under uniform external pressure, J. Marine. Sci. Appl., vol. 19, no. 1, pp. 96–100, 2020. DOI: 10.1007/s11804-020-00125-7.
  • V. Barathan and V. Rajamohan, Nonlinear buckling analysis of a semi-elliptical dome: Numerical and experimental investigations, Thin-Walled Struct., vol. 171, p. 108708, 2022. DOI: 10.1016/j.tws.2021.108708.
  • S. Gnanasekar and V. Rajamohan, Numerical and experimental investigations on nonlinear buckling response of a laminated composite shell, Int. J. Appl. Mech., vol. 14, no. 07, p. 2250078, 2022. DOI: 10.1142/S1758825122500788.
  • V. Barathan and V. Rajamohan, Nonlinear buckling analysis of a sandwich composite semi-ellipsoidal shell under hydrostatic pressure: A numerical and experimental investigation, Mech. Adv. Mater. Struct., pp. 1–15, 2022. DOI: 10.1080/15376494.2022.2114049.
  • E.T. Thostenson, Z. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: A review, Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, 2001. DOI: 10.1016/S0266-3538(01)00094-X.
  • K.T. Lau, Interfacial bonding characteristics of nanotube/polymer composites, Chem. Phys. Lett., vol. 370, no. 3–4, pp. 399–405, 2003. DOI: 10.1016/S0009-2614(03)00100-3.
  • A.K.T. Lau and D. Hui, The revolutionary creation of new advanced materials—carbon nanotube composites, Compos. B, Eng., vol. 33, no. 4, pp. 263–277, 2002. DOI: 10.1016/S1359-8368(02)00012-4.
  • X.L. Xie, Y.W. Mai, and X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mater. Sci. Eng.: R: Rep., vol. 49, no. 4, pp. 89–112, 2005. DOI: 10.1016/j.mser.2005.04.002.
  • M.K. Yeh, N.H. Tai, and J.H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, vol. 44, no. 1, pp. 1–9, 2006. DOI: 10.1016/j.carbon.2005.07.005.
  • A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. van Vuure, L. Gorbatikh, P. Moldenaers and I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, vol. 47, no. 12, pp. 2914–2923, 2009. DOI: 10.1016/j.carbon.2009.06.039.
  • A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., vol. 31, no. 9, pp. 4202–4208, 2010. DOI: 10.1016/j.matdes.2010.04.018.
  • A. Ghavamian and A. Öchsner, Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes, Physica E, vol. 46, pp. 241–249, 2012. DOI: 10.1016/j.physe.2012.08.002.
  • P. Malekzadeh and M. Shojaee, Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers, Thin-Walled Struct., vol. 71, pp. 108–118, 2013. DOI: 10.1016/j.tws.2013.05.008.
  • H.S. Shen and Y. Xiang, Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment, Compos. B: Eng., vol. 52, pp. 311–322, 2013. DOI: 10.1016/j.compositesb.2013.04.034.
  • J.E. Jam and Y. Kiani, Buckling of pressurized functionally graded carbon nanotube reinforced conical shells, Compos. Struct., vol. 125, pp. 586–595, 2015. DOI: 10.1016/j.compstruct.2015.02.052.
  • P.T. Thang, Geometrically nonlinear buckling analysis of functionally graded carbon nanotube reinforced cylindrical panels resting on Winkler–Pasternak elastic foundation, Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci., vol. 233, no. 2, pp. 702–712, 2019. DOI: 10.1177/0954406218760957.
  • V. Rajamohan and A.T. Mathew, Material and mechanical characterization of multi-functional carbon nanotube reinforced hybrid composite materials, Exp. Tech., vol. 43, no. 3, pp. 301–314, 2019. DOI: 10.1007/s40799-019-00316-0.
  • J. Lakshmipathi and R. Vasudevan, Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates, Steel Compos. Struct., Int. J., vol. 30, no. 1, pp. 31–46, 2019. DOI: 10.12989/scs.2019.30.1.031.
  • M.K. Kassa and A.B. Arumugam, Micromechanical modeling and characterization of elastic behavior of carbon nanotube‐reinforced polymer nanocomposites: A combined numerical approach and experimental verification, Polym. Compos., vol. 41, no. 8, pp. 3322–3339, 2020. DOI: 10.1002/pc.25622.
  • M.K. Kassa, A.B. Arumugam, and T. Rana, Three-phase modelling and characterization of elastic behavior of MWCNT reinforced GFRP composites: A combined numerical and experimental study, Mater. Today: Proc., vol. 26, pp. 944–949, 2020. DOI: 10.1016/j.matpr.2020.01.152.
  • A.H. Sofiyev, F. Tornabene, R. Dimitri, and N. Kuruoglu, Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading, Nanomaterials, vol. 10, no. 3, p. 419, 2020. DOI: 10.3390/nano10030419.
  • A.M. El-Ashmawy, Y. Xu, and L.A. El-Mahdy, Mechanical properties improvement of bi-directional functionally graded laminated MWCNT reinforced composite beams using an integrated tailoring–optimization approach, Microporous Mesoporous Mater., vol. 314, p. 110875, 2021. DOI: 10.1016/j.micromeso.2021.110875.
  • A.B. Reddy and K.S. Ram, Buckling of functionally graded carbon nanotube reinforced composite cylindrical shell panel with a cutout under uniaxial compression, Mater. Today: Proc., vol. 49, pp. 1865–1869, 2022. DOI: 10.1016/j.matpr.2021.08.059.
  • J.F. Wang, S.H. Cao, and W. Zhang, Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate, Eur. J. Mech.-A/Solids, vol. 85, p. 104105, 2021. DOI: 10.1016/j.euromechsol.2020.104105.
  • S. Chakraborty and T. Dey, Non-linear stability analysis of CNT reinforced composite cylindrical shell panel subjected to thermomechanical loading, Compos. Struct., vol. 255, p. 112995, 2021. DOI: 10.1016/j.compstruct.2020.112995.
  • ASTM, Committee D-30 on Composite Materials, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, 2008.
  • ANSYS, Mechanical APDL Theory Reference, ANSYS Inc., Canonsburg, 2019.
  • A.K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, 2005.
  • V.S. Kathavate, D.N. Pawar, N.S. Bagal, A.S. Adkine, and V.G. Salunkhe, Micromechanics based models for effective evaluation of elastic properties of reinforced polymer matrix composites, Mater. Today: Proc., vol. 21, pp. 1298–1302, 2020. DOI: 10.1016/j.matpr.2020.01.166.
  • V.S. Kathavate, V.N. Pawar, and A.S. Adkine, Micromechanics-based approach for the effective estimation of the elastic properties of fiber-reinforced polymer matrix composite, J. Micromech. Mol. Phys., vol. 04, no. 03, p. 1950005, 2019. DOI: 10.1142/S242491301950005X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.