113
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Multi-scale mechanism of steel tube restraint effect on concrete of CFST

, &
Pages 3033-3048 | Received 10 Jun 2022, Accepted 12 Jan 2023, Published online: 05 Feb 2023

References

  • L.H. Han, Fire performance of concrete filled steel tubular beam-columns, J. Constr. Steel Res., vol. 57, pp. 695–709, 2001. DOI: 10.1016/S0143-974X(00)00030-4.
  • K.Z. Xie, H.W. Wang, X. Guo, and J.X. Zhou, Study on the safety of the concrete pouring process for the main truss arch structure in a long span concrete-filled steel tube arch bridge, Mech. Adv. Mater. Struct., vol. 28, no. 7, pp. 1–10, 2019. DOI: 10.1080/15376494.2019.1601309.
  • C. Yang, P. Gao, X.X. Wu, Y.F. Chen, Q. Li, and Z. Li, Practical formula for predicting axial strength of circular-CFST columns considering size effect, J. Constr. Steel Res., vol. 168, p. 105979, 2020. DOI: 10.1016/j.jcsr.2020.105979.
  • Y.H. Huang, Z.C. Yang, J.Y. Fu, and A.R. Liu, Long-term lateral-torsional buckling behavior of pin-ended CFST arches under uniform radial loads and temperature field, Mech. Adv. Mater. Struct., vol. 28, no. 1, pp. 1–15, 2020. DOI: 10.1080/15376494.2020.1743397.
  • C. Guo and Z.R. Lu, Effect of temperature on CFST arch bridge ribs in harsh weather environments, Mech. Adv. Mater. Struct., vol. 29, no. 5, pp. 732–747, 2020. DOI: 10.1080/15376494.2020.1790701.
  • Y.Y. Wang, Y. Geng, J. Chen, and M.Z. Zhao, Testing and analysis on nonlinear creep behaviour of concrete-filled steel tubes with circular cross-section, Eng. Struct., vol. 185, pp. 26–46, 2019. DOI: 10.1016/j.engstruct.2019.01.065.
  • C. Guo and Z.R. Lu, Effect of circumferential gap on dynamic performance of CFST arch bridges, J. Bridge Eng., vol. 26, no. 2, p. 0402012, 2021. DOI: 10.1061/(ASCE)BE.1943-5592.0001661.
  • Y.Y. Wang, P. Chen, C.Y. Liu, and Y. Zhang, Size effect of circular concrete-filled steel tubular short columns subjected to axial compression, Thin-Walled Struct., vol. 120, pp. 397–407, 2017. DOI: 10.1016/j.tws.2017.09.010.
  • P. Chen, Y.Y. Wang, and S.M. Zhang, Size effect prediction on axial compression strength of circular CFST columns, J. Constr. Steel Res., vol. 172, p. 106221, 2020. DOI: 10.1016/j.jcsr.2020.106221.
  • G.Q. Li, Y. Zhao, and S.S. Pang, Four-phase sphere modeling of effective bulk modulus of concrete, Cem. Concr. Res., vol. 29, no. 6, pp. 839–845, 1999. DOI: 10.1016/S0008-8846(99)00040-X.
  • Y.Y. Gao, C.L. Hu, Y.M. Zhang, Z.J. Li, and J.L. Pan, Characterisation of the interfacial transition zone in mortars by nanoindentation and scanning electron microscope, Mag. Concr. Res., vol. 70, no. 17-18, pp. 965–972, 2018. DOI: 10.1680/jmacr.17.00161.
  • M. Khedmati, H. Alanazi, Y.R. Kim, G. Nsengiyumva, and S. Moussavi, Effects of Na2O/SiO2 molar ratio on properties of aggregate-paste interphase in fly ash-based geopolymer mixtures through multiscale measurements, Constr. Build. Mater., vol. 191, pp. 564–574, 2018. DOI: 10.1016/j.conbuildmat.2018.10.024.
  • L. Brown, P.G. Allison, and F. Sanchez, Use of nanoindentation phase characterization and homogenization to estimate the elastic modulus of heterogeneously decalcified cement pastes, Mater. Des., vol. 142, pp. 308–318, 2018. DOI: 10.1016/j.matdes.2018.01.030.
  • R.K. Zare, K. Yong-Rak, K. Mahdieh, N. Gabriel, and A. Hani, Two-way linked multiscale method integrated with nanomechanical tests and cohesive zone fracture to model highly heterogeneous binding materials, J. Eng. Mech., vol. 144, no. 10, p. 04018095, 2018. DOI: 10.1061/(ASCE)EM.1943-7889.0001518.
  • Y.F. Wang, Q. Xu, and S.H. Chen, Approaches of concrete creep using mesomechanics: Numerical simulation and predictive model, Modell. Simul. Mater. Sci. Eng., vol. 27, no. 5, p. 055012, 2019. DOI: 10.1088/1361-651X/ab1f43.
  • X.Q. Zhou and H. Hao, Mesoscale modelling of concrete tensile failure mechanism at high strain rates, Comput. Struct., vol. 86, no. 21-22, pp. 2013–2026, 2008. DOI: 10.1016/j.compstruc.2008.04.013.
  • X.L. Du, L. Jin, and G.W. Ma, A meso-scale numerical method for the simulation of chloride diffusivity in concrete, Finite Elem. Anal. Des., vol. 85, pp. 87–100, 2014. DOI: 10.1016/j.finel.2014.03.002.
  • X.L. Du and L. Jin, Meso-scale numerical investigation on cracking of cover concrete induced by corrosion of reinforcing steel, Eng. Fail. Anal., vol. 39, pp. 21–33, 2014. DOI: 10.1016/j.engfailanal.2014.01.011.
  • F. Bernard and S. Kamali-Bernard, Numerical study of ITZ contribution on mechanical behaviour and diffusivity of mortars, Comput. Mater. Sci., vol. 102, pp. 250–257, 2015. DOI: 10.1016/j.commatsci.2015.02.016.
  • F. Gong, T. Ueda, and D.W. Zhang, Two-dimensional rigid body spring method based micro-mesoscale study of mechanical strengthening/damaging effects to concrete by frost action, Struct. Concr., vol. 19, no. 4, pp. 1131–1145, 2018. DOI: 10.1002/suco.201700200.
  • V. Nežerka, P. Bílý, V. Hrbek, and J. Fládr, Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete, Cem. Concr. Compos., vol. 103, pp. 252–262, 2019. DOI: 10.1016/j.cemconcomp.2019.05.012.
  • Y. Gao, X.Y. Zhu, D.J. Corr, M.S. Konsta-Gdoutos, and S.P. Shah, Characterization of the interfacial transition zone of CNF-reinforced cementitious composites, Cem. Concr. Compos., vol. 99, pp. 130–139, 2019. DOI: 10.1016/j.cemconcomp.2019.03.002.
  • C. Guo and Z.R. Lu, A 3D FEM mesoscale numerical analysis of concrete tensile strength behaviour, Adv. Mater. Sci. Eng., vol. 2021, p. 5538477, 2021. DOI: 10.1155/2021/5538477.
  • L. Jin, L.L. Fan, D. Li, and X.L. Du, Size effect of square concrete-filled steel tubular columns subjected to lateral shear and axial compression: Modelling and formulation, Thin-Walled Struct., vol. 157, p. 107158, 2020. DOI: 10.1016/j.tws.2020.107158.
  • L. Jin, H.M. Chen, L.L. Fan, P. Li, and X.L. Du, Size effect on nominal strength of lightweight and normal concrete-filled steel tube columns under axial compression: Mesoscale simulations, J. Struct. Eng., vol. 146, no. 12, p. 04020265, 2020. DOI: 10.1061/(ASCE)ST.1943-541X.0002827.
  • C. Guo, Z.R. Lu, and G.C. Li, Multi-scale numerical analysis of the eccentricity on the instability of RCFST long columns, Thin-Walled Struct., vol. 167, p. 108228, 2021. DOI: 10.1016/j.tws.2021.108228.
  • A. Jayasuriya, M.P. Adams, and M.J. Bandelt, Understanding variability in recycled aggregate concrete mechanical properties through numerical simulation and statistical evaluation, Constr. Build. Mater., vol. 178, no. 30, pp. 301–312, 2018. DOI: 10.1016/j.conbuildmat.2018.05.158.
  • Z.M. Wang, A.K.H. Kwan, and H.C. Chan, Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh, Comput. Struct., vol. 70, no. 5, pp. 533–544, 1999. DOI: 10.1016/S0045-7949(98)00177-1.
  • E. Nasiri and Y. Liu, Development of a detailed 3D FE model for analysis of the in-plane behaviour of masonry infilled concrete frames, Eng. Struct., vol. 143, pp. 603–616, 2017. DOI: 10.1016/j.engstruct.2017.04.049.
  • C.L. Hu and Z.J. Li, A review on the mechanical properties of cement-based materials measured by nanoindentation, Constr. Build. Mater., vol. 90, pp. 80–90, 2015. DOI: 10.1016/j.conbuildmat.2015.05.008.
  • Z. Tao, Z.B. Wang, and Q. Yu, Finite element modelling of concrete-filled steel stub columns under axial compression, J. Constr. Steel Res., vol. 89, pp. 121–131, 2013. DOI: 10.1016/j.jcsr.2013.07.001.
  • L.H. Han, G.H. Yao, and Z. Tao, Performance of concrete-filled thin-walled steel tubes under pure torsion, Thin-Walled Struct., vol. 45, pp. 24–36, 2007. DOI: 10.1016/j.tws.2007.01.008.
  • K. Sakino, H. Nakahara, S. Morino, and I. Nishiyama, Behavior of centrally loaded concrete-filled steel-tube short columns, J. Struct. Eng., vol. 130, no. 2, pp. 180–188, 2004. DOI: 10.1061/(ASCE)0733-9445(2004)130:2(180).
  • W. Li, L.H. Han, and T.M. Chan, Numerical investigation on the performance of concrete-filled double-skin steel tubular members under tension, Thin-Walled Struct., vol. 79, pp. 108–118, 2014. DOI: 10.1016/j.tws.2014.02.001.
  • A. Hillerborg, M. Modéer, and P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976. DOI: 10.1016/0008-8846(76)90007-7.
  • J. Xiao, W.G. Li, D.J. Corr, and S.P. Shah, Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete, Cem. Concr. Res., vol. 52, pp. 82–99, 2013. DOI: 10.1016/j.cemconres.2013.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.