421
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Peridynamic investigation on crack propagation mechanism of rock mass during excavation of tunnel group in cold regions

& ORCID Icon
Pages 3061-3076 | Received 23 Aug 2022, Accepted 12 Jan 2023, Published online: 25 Jan 2023

References

  • J. Lai, X. Wang, J. Qiu, G. Zhang, J. Chen, Y. Xie, and Y. Luo, A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China, Renew. Sust. Energ. Rev., vol. 82, no. 3, pp. 3554–3569, 2018. DOI: 10.1016/j.rser.2017.10.104.
  • X. Zhang, Y. Lai, W. Yu, and S. Zhang, Non-linear analysis for the freezing-thawing situation of the rock surrounding the tunnel in cold regions under the conditions of different construction seasons, initial temperatures and insulations, Tunn. Undergr. Sp. Tech., vol. 17, no. 3, pp. 315–325, 2002. DOI: 10.1016/S0886-7798(02)00030-5.
  • H. Liu, X. Yuan, and T. Xie, A damage model for frost heaving pressure in circular rock tunnel under freezing-thawing cycles, Tunn. Undergr. Sp. Tech., vol. 83, pp. 401–408, 2019. DOI: 10.1016/j.tust.2018.10.012.
  • Z. Lv, C. Xia, Q. Li, and Z. Si, Empirical frost heave model for saturated rock under uniform and unidirectional freezing conditions, Rock Mech. Rock Eng., vol. 52, no. 3, pp. 955–963, 2019. DOI: 10.1007/s00603-018-1666-z.
  • P. Wang, and G. Zhou, Frost-heaving pressure in geotechnical engineering materials during freezing process, Int. J. Min. Sci. Techno., vol. 28, no. 2, pp. 287–296, 2018. DOI: 10.1016/j.ijmst.2017.06.003.
  • C. Xia, Z. Lv, Q. Li, J. Huang, and X. Bai, Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels, Cold Reg. Sci. Technol., vol. 152, pp. 48–58, 2018. DOI: 10.1016/j.coldregions.2018.04.011.
  • X. Tan, W. Chen, H. Liu, L. Wang, W. Ma, and A. H. C. Chan, A unified model for frost heave pressure in the rock with a penny-shaped fracture during freezing, Cold Reg. Sci. Technol., vol. 153, pp. 1–9, 2018. DOI: 10.1016/j.coldregions.2018.04.016.
  • Z. Lv, C. Xia, Y. Wang, and J. Luo, Analytical elasto-plastic solution of frost heaving force in cold region tunnels considering transversely isotropic frost heave of surrounding rock, Cold Reg. Sci. Technol., vol. 163, pp. 87–97, 2019. DOI: 10.1016/j.coldregions.2019.04.008.
  • S. Huang, Q. Liu, Y. Liu, Y. Kang, A. Cheng, and Z. Ye, Frost heaving and frost cracking of elliptical cavities (fractures) in low-permeability rock, Eng. Geol., vol. 234, pp. 1–10, 2018. DOI: 10.1016/j.enggeo.2017.12.024.
  • H. L. Jia, L. Han, T. Zhao, Q. Sun, and X. J. Tan, Strength and the cracking behavior of frozen sandstone containing ice-filled flaws under uniaxial compression, Permafrost Periglac., vol. 33, no. 2, pp. 160–175, 2022. DOI: 10.1002/ppp.2142.
  • N. Matsuoka, Mechanisms of rock breakdown by frost action: An experimental approach, Cold Reg. Sci. Technol., vol. 17, no. 3, pp. 253–270, 1990. DOI: 10.1016/S0165-232X(05)80005-9.
  • G. P. Davidson, and J. F. Nye, A photoelastic study of ice pressure in rock cracks, Cold Reg. Sci. Technol., vol. 11, no. 2, pp. 141–153, 1985. DOI: 10.1016/0165-232X(85)90013-8.
  • S. Huang, Y. Cai, Y. Liu, and G. Liu, Experimental and theoretical study on frost deformation and damage of red sandstones with different water contents, Rock Mech. Rock Eng., vol. 54, no. 8, pp. 4163–4181, 2021. DOI: 10.1007/s00603-021-02509-9.
  • E. Pimentel, S. Papakonstantinou, and G. Anagnostou, Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling, Tunn. Undergr. Sp. Tech., vol. 28, pp. 57–69, 2012. DOI: 10.1016/j.tust.2011.09.005.
  • Y. Lai, X. Zhang, J. Xiao, S. Zhang, and Z. Liu, Nonlinear analysis for frost-heaving force of land bridges on Qing-Tibet railway in cold regions, J. Therm. Stresses., vol. 28, no. 3, pp. 317–331, 2006. DOI: 10.1080/01495730590909531.
  • Y. Zhou, W. Ma, X. Tan, W. Chen, D. Yang, Z. Su, X. Zhang, and F. Xu, Numerical simulation of fracture propagation in freezing rocks using the extended finite element method (XFEM), Int. J. Rock Mech. Min., vol. 148, p. 104963, 2021. DOI: 10.1016/j.ijrmms.2021.104963.
  • A. K. M. Farid Uddin, K. Numata, J. Shimasaki, M. Shigeishi, and M. Ohtsu, Mechanisms of crack propagation due to corrosion of reinforcement in concrete by AE-SiGMA and BEM, Constr. Build. Mater., vol. 18, no. 3, pp. 181–188, 2004. DOI: 10.1016/j.conbuildmat.2003.10.007.
  • S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, vol. 48, no. 1, pp. 175–209, 2000. DOI: 10.1016/S0022-5096(99)00029-0.
  • O. Karpenko, S. Oterkus, and E. Oterkus, An in-depth investigation of critical stretch based failure criterion in ordinary state-based peridynamics, Int. J. Fracture, vol. 226, no. 1, pp. 97–119, 2020. DOI: 10.1007/s10704-020-00481-z.
  • B. Kilic, A. Agwai, and E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates, Compos. Struct., vol. 90, no. 2, pp. 141–151, 2009. DOI: 10.1016/j.compstruct.2009.02.015.
  • F. S. Vieira and A. L. Araújo, Implicit non-ordinary state-based peridynamics model for linear piezoelectricity, Mech. Adv. Mater. Struc., vol. 29, no. 28, pp. 7329–7350, 2021. DOI: 10.1080/15376494.2021.1995798.
  • E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications, Springer Science, New York, 2014.
  • T. Ni, M. Zaccariotto, Q. Zhu, and U. Galvanetto, Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D, Mech. Adv. Mater. Struc., vol. 28, no. 9, pp. 875–890, 2021. DOI: 10.1080/15376494.2019.1602237.
  • Y. Ru, H. Yong, and Y. Zhou, Fracture analysis of bulk superconductors under electromagnetic force, Eng. Fract. Mech., vol. 199, pp. 257–273, 2018. DOI: 10.1016/j.engfracmech.2018.05.024.
  • P. Wu, Y. Liu, X. Peng, and Z. Chen, Peridynamic modeling of freezethaw damage in concrete structures, Mech. Adv. Mater. Struc., Apr. 2022. DOI: 10.1080/15376494.2022.2064015.
  • Y. Gao and S. Oterkus, Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems, Continuum Mech. Therm., vol. 31, no. 4, pp. 907–937, 2019. DOI: 10.1007/s00161-018-0691-1.
  • J. Chen, W. Jiang, Q. Wang, and Y. Zhang, Peridynamic analysis of drill-induced borehole damage, Eng. Fail. Anal., vol. 104, pp. 47–66, 2019. DOI: 10.1016/j.engfailanal.2019.05.028.
  • C. Gao, Z. Zhou, Z. Li, L. Li, and S. Cheng, Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation, Tunn. Undergr. Sp. Tech., vol. 97, p. 103289, 2020. DOI: 10.1016/j.tust.2020.103289.
  • Y. Zhang, D. Huang, Z. Cai, and Y. Xu, An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing, Eng. Fract. Mech., vol. 234, p. 107086, 2020. DOI: 10.1016/j.engfracmech.2020.107086.
  • L. Guo, X. Zhang, W. Li, and X. Zhou, Multi-scale peridynamic formulations for chloride diffusion in concrete, Eng. Anal. Bound. Elem., vol. 120, pp. 107–117, 2020. DOI: 10.1016/j.enganabound.2020.08.012.
  • W. Li, and L. Guo, Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method, Constr. Build. Mater., vol. 161, pp. 665–675, 2018. DOI: 10.1016/j.conbuildmat.2017.12.002.
  • Y. Zhou, M. Zhang, W. Pei, and Y. Wang, A non-local frost heave model based on peridynamics theory, Comput. Geotech., vol. 145, p. 104675, 2022. DOI: 10.1016/j.compgeo.2022.104675.
  • T. Vaitkunas, P. Griskevicius, and A. Adumitroaie, Peridynamic material model calibration based on digital image correlation experimental measurements, Mech. Adv. Mater. Struc., Jun. 2022. DOI: 10.1080/15376494.2022.2089934.
  • A. Ahadi and S. Melin, Capturing nanoscale effects by peridynamics, Mech. Adv. Mater. Struc., vol. 25, no. 13, pp. 1115–1120, 2018. DOI: 10.1080/15376494.2017.1365985.
  • S. A. Silling and F. Bobaru, Peridynamic modeling of membranes and fibers, Int. J. Nonlin. Mech., vol. 40, no. 2–3, pp. 395–409, 2005. DOI: 10.1016/j.ijnonlinmec.2004.08.004.
  • C. Gao, Z. Zhou, L. Li, Z. Li, D. Zhang, and S. Cheng, “Strength reduction model for jointed rock masses and peridynamics simulation of Page 2 of 2 uniaxial compression testing,” Geomech. Geophys. Geo., vol. 7, no. 2, p. 34, 2021. DOI: 10.1007/s40948-021-00232-x.
  • J. Zhang and L. Guo, Peridynamics simulation of shotcrete lining damage characteristics under freeze-thaw cycles in cold region tunnels, Eng. Anal. Bound. Elem., vol. 141, pp. 17–35, 2022. DOI: 10.1016/j.enganabound.2022.05.002.
  • M. L. Parks, R. B. Lehoucq, S. J. Plimpton, and S. A. Silling, Implementing peridynamics within a molecular dynamics code, Comput. Phys. Commun., vol. 179, no. 11, pp. 777–783, 2008. DOI: 10.1016/j.cpc.2008.06.011.
  • B. Kilic and E. Madenci, An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor. Appl. Fract. Mec., vol. 53, no. 3, pp. 194–204, 2010. DOI: 10.1016/j.tafmec.2010.08.001.
  • S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., vol. 83, no. 17–18, pp. 1526–1535, 2005. DOI: 10.1016/j.compstruc.2004.11.026.
  • T. Wang, C. A. Tang, S. Tang, C. Bao, Y. Li, and N. Fan, The mechanism of crack propagation during frost heave damage in fractured rock mass at low temperature, Arab. J. Geosci., vol. 14, no. 18, p. 1882, 2021. DOI: 10.1007/s12517-021-07827-4.
  • W. Hu, Y. D. Ha, and F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Comput. Method. Appl. Mech. Eng., vol. 217–220, pp. 247–261, 2012. DOI: 10.1016/j.cma.2012.01.016.
  • T. Zhang, X. Zhou, and Q. Qian, The peridynamic Drucker-Prager plastic model with fractional order derivative for the numerical simulation of tunnel excavation, Int. J. Numer. Anal. Met., vol. 46, no. 9, pp. 1620–1659, 2022. DOI: 10.1002/nag.3361.
  • Y. Z. Xiang, Z. K. Zeng, Y. J. Xiang, E. Abi, Y. R. Zheng, and H. C. Yuan, Tunnel failure mechanism during loading and unloading processes through physical model testing and DEM simulation, Sci. Rep.-UK, vol. 11, no. 1, p. 16753, 2021. DOI: 10.1038/s41598-021-96206-w
  • Y. Zhou, S. W. Feng, and J. W. Li, Study on the failure mechanism of rock mass around a mined-out area above a highway tunnel-Similarity model test and numerical analysis, Tunn. Undergr. Sp. Tech., vol. 118, p. 104182, 2021. DOI: 10.1016/j.tust.2021.104182.
  • Z. Yang, S. Yang, and W. Tian, Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments, Int. J. Rock Mech. Min., vol. 138, p. 104573, 2021. DOI: 10.1016/j.ijrmms.2020.104573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.