144
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical thermal analysis of armchair (6,6) and zig-zag (12,0) carbon nano-tubes (CNTs)

, ORCID Icon &
Pages 3108-3125 | Received 04 Jul 2022, Accepted 12 Jan 2023, Published online: 13 Feb 2023

References

  • S. Ijima, Helical microtubules of graphitic carbon, Nature., vol. 354, pp. 56–58, 1991.
  • A. Akdogan and B. O. Ve Kucukyildirim, Karbon nanotupler, sentezleme yontemleri ve kullanim alanlari, Muhendis ve Makina., vol. 630, pp. 34–44, 2006.
  • A. F. Avila and G. S. R. Lacerda, From nano to macromechanics: A molecular mechanics analysis of single-walled carbon nano-tubes. In: Proceedings of the19th International Congress of Mechanical Engineering [CD-ROM], Universidade de Brasilia, Brasília, Brazil, 2007.
  • A. F. Avila and G. S. R. Lacerda, Molecular mechanics applied to single-walled carbon nano-tubes, Mat. Res., vol. 11, no. 3, pp. 325–333, 2008. DOI: 10.1590/S1516-14392008000300016.
  • T. Belytschko, S. Xiao, G. Schatz, and R. Ruoff, Atomistic simulation of nano-tube fracture, Phys. Rev. B., vol. 65, no. 23, pp. 235–430, 2002. DOI: 10.1103/PhysRevB.65.235430.
  • Guanghua Gao, Tahir Çagin, and William A. Goddard, Energetics, structure, mechanical and vibrational properties of single-walled carbon nano-tubes, Nanotechnol., vol. 9, no. 3, pp. 184–191, 1998. DOI: 10.1088/0957-4484/9/3/007.
  • E. I. Saavedra Flores, S. Adhikari, M. I. Friswell, and F. Scarpa, Hyperelastic finite element model for single wall carbon nano-tubes in tension, Computat. Mater. Sci., vol. 50, no. 3, pp. 1083–1087, 2011. DOI: 10.1016/j.commatsci.2010.11.005.
  • J. M. Wernik and S. A. Meguid, Atomistic-Based Continuum Modeling of the Nonlinear Behavior of Carbon Nano-Tubes, Springer-Verlag, Acta mechanica 212, pp. 167–179, 2009. DOI: 10.1007/s00707-009-0246-4
  • P. Zhang, P. E. Lammert, and V. H. Crespi, Plastic deformations of carbon nano-tubes, Phys. Rev. Lett., vol. 81, no. 24, pp. 5346–5349, 1998. DOI: 10.1103/PhysRevLett.81.5346.
  • P. Zhang, Y. Huang, P. H. Geubelle, P. Klein, and K. C. Hwang, The elastic modulus of single-wall carbon nano-tubes: Continuum analysis incorporating interatomic potential, Int. J. Solids Struc., vol. 39, no. 13–14, pp. 3893–3906, 2002. DOI: 10.1016/S0020-7683(02)00186-5.
  • X. Zhou, J. Zhou, and Z. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nano-tubes calculated from electronic energy-bond theory, Phys. Rev. B., vol. 62, pp. 13692–13696, 2000.
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon fibers based on C60 and their symmetry, Phys. Rev. B., vol. 45, no. 11, pp. 6234–6242, 1992. DOI: 10.1103/PhysRevB.45.6234.
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes, Carbon., vol. 33, no. 7, pp. 883–891, 1995. DOI: 10.1016/0008-6223(95)00017-8.
  • M. Dresselhaus, G. Dresselhaus, and P. Eklund, Science of Fullerenes and Carbon Nano-Tubes, Academic Press, San Diego, 1996.
  • S. Berber, Y. K. Kwon, and D. Tomonek, Unusually high thermal coductivity of carbon nano-tubes, Phys. Rev. Lett., vol. 84, no. 20, pp. 4613–4616, 2000. DOI: 10.1103/PhysRevLett.84.4613.
  • B. Bhushan, 2004. Springer Handbook of Nanotechnology, ISBN 3642025242, Springer-Verlag, Berlin, Heidelberg.
  • T. Chang and H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J Mech. Phys. Solids., vol. 51, no. 6, pp. 1059–1074, 2003. DOI: 10.1016/S0022-5096(03)00006-1.
  • Dogan Nihat, Heat transfer analysis of carbon nano-tube, Master Thesis, 2013.
  • J. W. Chen, T. Cagin, and W. Goddard, III Thermal conductivity of carbon nano-tubes, Nanotechnol., vol. 11, pp. 65–69, 2000. DOI: 10.1088/0957-4484/11/2/305
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001. DOI: 10.1063/1.1408272.
  • M. Daenen, R. D. Fouw, B. Hamers, P. G. A. Janssen, K. Schouteden, and M. A. J. Veld, 2003. The wondrous world of carbon nano-tubes.
  • Peter J. F. Harris, Carbon Nano-Tubes and Related Structures: New Materials for the Twenty-First Century, University Press, Cambridge, 1999.
  • E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic properties of C and BxCyNz composite nano-tubes, Phys. Rev. Lett., vol. 80, no. 20, pp. 4502–4505, 1998. DOI: 10.1103/PhysRevLett.80.4502.
  • J. P. Lu, Elastic properties of carbon nano-tubes and nanoropes, Phys. Rev. Lett., vol. 79, no. 7, pp. 1297–1300, 1997.
  • J. Hone, M. Whitney, and A. Zettl, Thermal conductivity of single-walled carbon nano-tubes, Synth. Met., vol. 103, no. 1–3, pp. 2498–2499, 1999. DOI: 10.1016/S0379-6779(98)01070-4.
  • J. Hone, M. C. Llaguno, N. M. Nemes, and A. T. Johnson, Electrical and thermal transport properties of magnetically aligned single wall carbon nano-tube films, Appl. Phys. Lett., vol. 77, no. 5, pp. 666–668, 2000. DOI: 10.1063/1.127079.
  • J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes and J. E. Fischer, Thermal properties of carbon nano-tubes and nano-tube-based materials, Appl. Phys. A. Mater., vol. 74, no. 3, pp. 339–343, 2002. And DOI: 10.1007/s003390201277.
  • J. Hone, Carbon nano-tubes: Thermal properties, Dekker Encyclopedia of Nanosci. Nanotechnol., vol. 1, no. 2000, pp. 9128, 2004. DOI: 10.1081/E-ENN. Columbia University, NewYork.
  • Isak Kotcioglu, Mansour Nasiri Khalaji, and Nihat Dogan, Heat transfer analysis of armchair (5,5) and zigzag (10,0) carbon nano-tubes, Mech. Adv. Mater. Struct., pp. 67–87, 2019. DOI: 10.1080/15376494.2018.1549293.
  • Y. Jin and F. G. Yuan, Simulation of elastic properties of single-walled carbon nano-tube, Compos. Sci. Technol., vol. 63, no. 11, pp. 1507–1515, 2003. DOI: 10.1016/S0266-3538(03)00074-5.
  • C. Li and T. W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct., vol. 40, no. 10, pp. 2487–2499, 2003. DOI: 10.1016/S0020-7683(03)00056-8.
  • P. Zhang, Y. Huang, H. Gao, and K. C. Hwang, Fracture nucleation in single-wall carbon nano-tubes under tension: Continuum analysis incorporating interatomic potential, J. Appl. Mech. Trans. ASME., vol. 69, no. 4, pp. 454–458, 2002. DOI: 10.1115/1.1469002.
  • L. Kalaugher, “Nano-tube bike enters tour de France, http://nanotechweb.org/cws/article/tech/22597, 2005.
  • P. Kim, L. Shi, A. Majumdur, and P. L. McEuen, Thermal transport measurements of individual multiwalled nano-tubes, Phys. Rev. Letter., vol. 87, no. 21, 215502-1–215502-4, 2001. DOI: 10.1103/PhysRevLett.87.215502
  • S. Maruyama, A molecular dynamics simulation of heat conduction in finite length SWNTs, Phys. B., vol. 323, no. 1–4, pp. 193–195, 2002. DOI: 10.1016/S0921-4526(02)00898-0.
  • S. Maruyama, Molecular dynamics simulation of heat conduction of a finite length single-walled carbon nano-tube, Microscale Thermophys. Eng., vol. 7, no. 1, pp. 41–50, 2003. DOI: 10.1080/10893950390150467.
  • Steve Mirsky, Tantalizing tubes, Scientific American, 2000.
  • E. Mohammad Pour and M. Awang, Predicting a stretching behavior of carbon nano-tubes using finite element method, 2010.
  • J. F. Moreland, J. B. Freund, and G. Chen, The disparate thermal conductivity of carbon nano-tubes and diamond nanowires studied by atomistic simulation, Microscale Thermophys. Eng., vol. 8, no. 1, pp. 61–69, 2004. DOI: 10.1080/10893950490272939.
  • M. S. E. Naschi, Nanotechnology for the developing world, Chaos Solit. Fractals., vol. 30, no. 4, pp. 769–773, 2006.
  • G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, Equivalent continuum modeling of nano-structured materials, Compos. Sci. Technol., vol. 62, no. 14, pp. 1869–1880, 2002. DOI: 10.1016/S0266-3538(02)00113-6.
  • M. A. Osman and D. Srivastava, Temperature dependence of the thermal conductivity of singlewall carbon nano-tubes, Nanotechnol., vol. 12, no. 1, pp. 21–24, 2001. DOI: 10.1088/0957-4484/12/1/305.
  • C. W. Padgett and D. W. Brenner, Influence of chemisorption on the thermal conductivity of single-wall carbon nano-tubes, Nano Lett., vol. 4, no. 6, pp. 1051–1053, 2004. DOI: 10.1021/nl049645d.
  • A. Pantano, D. M. Parks, and M. C. Boyce, Mechanics of deformation of single-and multi-wall carbon nano-tubes, J. Mech. Phys. Solids., vol. 52, no. 4, pp. 789–821, 2004. DOI: 10.1016/j.jmps.2003.08.004.
  • F. Scarpa and S. Adhikari, A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes, J. Phys. D: Appl. Phys., vol. 41, no. 8, pp. 085306, 2008. DOI: 10.1088/0022-3727/41/8/085306.
  • K. I. Tserpes and P. Papanikos, Finite Element modeling of single-walled carbon nano-tubes, Composite: Part B., vol. 36, no. 4, pp. 468–477, 2005.
  • J. P. Small, L. Shi, and P. Kim, Mesoscopic thermal and thermoelectric measurements of individual carbon nano-tubes, Solid State Comm., vol. 127, no. 2, pp. 181–186, 2003. DOI: 10.1016/S0038-1098(03)00341-7.
  • D. Srivastava and W. Chenyu, Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev., vol. 56, no. 2, 215–230, 2003. DOI: 10.1115/1.1538625
  • A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Young’s modulus of single-walled nano-tubes, Phys. Rev. B., vol. 58, no. 20, pp. 14013–14019, 1998. DOI: 10.1103/PhysRevB.58.14013.
  • M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high young’s modulus observed for individual carbon nano-tubes, Nature., vol. 381, no. 6584, pp. 678–680, 1996. DOI: 10.1038/381678a0.
  • Eric W. Wong, Paul E. Sheehan, and Charles M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nano-tubes and carbon nano-tubes, Sci., vol. 277, no. 5334, pp. 1971–1975, 1997. DOI: 10.1126/science.277.5334.1971.
  • B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear range, Phys. Rev. Lett., vol. 76, no. 14, pp. 2511–2514, 1996. DOI: 10.1103/PhysRevLett.76.2511.
  • W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, Linear specific heat of carbon nano-tubes, Phys. Rev. B., vol. 59, no. 14, pp. R9015–R9018, 1999. DOI: 10.1103/PhysRevB.59.R9015.
  • M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nano-tubes under tensile load, Sci., vol. 287, no. 5453, pp. 637–640, 2000. DOI: 10.1126/science.287.5453.637.
  • C. Yu, W. Jang, T. Hanrath, D. Kim, Z. Yao, B. Korgel, L. Shi, Z. L. Wang, D. Li, and A. Majumdar, Thermal and thermoelectric measurements of low dimensional nanostructures, Proc. ASME Summer Heat Transfer Conference, HT(2003)-47263, pp. 1–6, 2003
  • S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nano-tubes, J. Chem. Phys., vol. 104, no. 5, pp. 2089–2092, 1996. DOI: 10.1063/1.470966.
  • M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nano-Tubes, Academic Press, New York, 1996.
  • MinFeng Yu, M. J. Dyer, G. D. Skidmore, H. W. Rohrs, X. K. Lu, K. D. Ausman, J. R. Von Ehr, and R. S. Ruoff, Three-dimensional manipulation of carbon nano-tubes under a scanning electron microscope, Nanotechnol., vol. 10, no. 3, pp. 244–252, 1999. DOI: 10.1088/0957-4484/10/3/304.
  • Cagin, Energetics, structure, mechanical and vibrational properties of single-walled carbon nano-tubes (SWNT), by Guanghua Gao, Tahir Cagin*, and William A.Goddard III, 1997.
  • J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, and W. Benoit, Mechanical properties of carbon nano-tubes, Appl. Phys., vol. A;69, pp. 255–260, 1999.
  • A. Thess, et al., Crystalline ropes of metallic carbon nanotubes, Sci., vol. 273, no. 5274, pp. 483–487, 1996. DOI: 10.1126/science.273.5274.483.
  • K. I. Tserpes and P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Compos. B: Eng., vol. 36, no. 5, pp. 468–477, 2005. DOI: 10.1016/j.compositesb.2004.10.003.
  • www.teknoport.com.tr, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.