251
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Investigation on the improved absolute nodal coordinate formulation for variable cross-section beam with large aspect ratio

, , , &
Pages 3126-3137 | Received 21 May 2022, Accepted 12 Jan 2023, Published online: 15 Feb 2023

References

  • T. Zhang, X. Liu, and Q. Liu, Reliability based robust design of variable cross-section wedge beam, International Conference on Mechatronics & Applied Mechanics, 2011. 74–77.
  • H. Moon, H. Cho, S. Theodossiades, and T. Kim, Development of an anisotropic co-rotational beam model including variable cross-section, Mech. Adv. Mater. Struct., vol. 30, pp. 1–12, 2022.
  • G. Meng, X. Zhou, and J. Miao, Mechanical problems in momentous projects of aerospace engineering, Adv. Mech., vol. 46, pp. 268–318, 2016.
  • B. D. You, Z. H. Gao, J. M. Wen, Y. M. Sun, P. B. Hao, and D. Liang, Coupling dynamic behavior characteristics of a spacecraft beam with composite laminated structures and large-scale motions, Int. J. Aerosp. Eng., vol. 2018, pp. 1–12, 2018.
  • Y. Wang, W. Meng, Dan Bm, and S. Li, Dynamic modeling and numerical simulation of rigid-flexible coupling cantilever beam with vibration response, J. Mach. Design., vol. 35, pp. 06–07, 2018.
  • H. Kim, H. Lee, K. Lee, H. Cho, and M. Cho, Efficient flexible multibody dynamic analysis via improved c0 absolute nodal coordinate formulation-based element, Mech. Adv. Mater. Struct., vol. 29, pp. 1–13, 2021.
  • Z. X. Shen, X. F. Xing, and B. Y. Li, A new thin beam element with cross-section distortion of the absolute nodal coordinate formulation, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2021. 235: 7456–7467.
  • R. Schardt, Generalized beam theory an adequate method for coupled stability problems, Thin-Walled Struct., vol. 19, no. 2–4, pp. 161–180, 1994. DOI: 10.1016/0263-8231(94)90027-2.
  • C. Basaglia, D. Camotim, and N. Silvestre, Post-buckling analysis of thin-walled steel frames using generalised beam theory (gbt), Thin-Walled Struct., vol. 62, pp. 229–242, 2013. DOI: 10.1016/j.tws.2012.07.003.
  • A. Genoese, A. Genoese, A. Bilotta, and G. Garcea, A geometrically exact beam model with non-uniform warping coherently derived from the saint venant rod, Eng. Struct., vol. 68, pp. 33–46, 2014. DOI: 10.1016/j.engstruct.2014.02.024.
  • P. Yu, and F. X. Zhou, Exact solutions for free vibration of fgm simply supported beams on elastic foundation based on a generalized beam theory, Chin. J. Appl. Mech., vol. 37, pp. 841–845, 2020.
  • J. N. Reddy, and C. F. Liu, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • M. Ghorashi, Nonlinear static and stability analysis of composite beams by the variational asymptotic method, Int. J. Eng. Sci., vol. 128, pp. 127–150, 2018. DOI: 10.1016/j.ijengsci.2018.03.011.
  • E. Carrera, M. Cinefra, E. Zappino, and M. Petrolo, Finite Element Analysis of Structures through Unified Formulation, John Wiley and Sons: Hoboken. NJ, USA, pp. 253–260, 2014,
  • D. G. Pietro, D. A. G. Miguel, E. Carrera, G. Giunta, S. Belouettar, and A. Pagani, Strong and weak form solutions of curved beams via Carrera’s unified formulation, Mech. Adv. Mater. Struct., vol. 27, no. 15, pp. 1342–1353, 2020. DOI: 10.1080/15376494.2018.1510066.
  • B. Daraei, S. Shojaee, and S. Hamzehei-Javaran, A new finite strip formulation based on carrera unified formulation for the free vibration analysis of composite laminates, Mech. Adv. Mater. Struct., vol. 29, pp. 1–12, 2021.
  • E. Carrera, M. D. Demirbas, and R. Augello, Evaluation of stress distribution of isotropic, composite, and fg beams with different geometries in nonlinear regime via Carrera-unified formulation and Lagrange polynomial expansions, Appl. Sci., vol. 11, no. 22, pp. 10627–10647, 2021. DOI: 10.3390/app112210627.
  • A. Pagani, and E. Carrera, Unified formulation of geometrically nonlinear refined beam theories, Mech. Adv. Mater. Struct., vol. 25, no. 1, pp. 15–31, 2018. DOI: 10.1080/15376494.2016.1232458.
  • E. Carrera, and V. V. Zozulya, Carrera unified formulation (cuf) for the micropolar beams: Analytical solutions, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 583–607, 2021. DOI: 10.1080/15376494.2019.1578013.
  • A. A. Shabana, Definition of the slopes and the finite element absolute nodal coordinate formulation, Multibody SysDyn., vol. 1, no. 3, pp. 339–348, 1997. DOI: 10.1023/A:1009740800463.
  • A. A. Shabana, and D. Zhang, Ancf curvature continuity: Application to soft and fluid materials, Nonlinear Dyn., vol. 100, no. 2, pp. 1497–1517, 2020. DOI: 10.1007/s11071-020-05550-5.
  • Dufva, K. Shabana, and A. A. Analysis, of thin plate structures using the absolute nodal coordinate formulation, J. Multi-Body Dyn., vol. 219, pp. 345–355, 2005.
  • C. Z. Zhao, H. D. Yu, and Wang H. Zhao, Y. Dynamic modeling and kinematic behavior of variable cross-section beam based on the absolute nodal coordinate formulation, JME., vol. 50, no. 17, pp. 38–45, 2014. DOI: 10.3901/JME.2014.17.038.
  • X. J. Yu, B. D. You, X. M. Liu, and Q. Cao, Nonlinear dynamics investigation of variable cross-sectional solar-sail masts, J. Spacecraft Rockets, vol. 58, no. 4, pp. 936–946, 2021. DOI: 10.2514/1.A34925.
  • L. Cui, H. Wang, X. Liang, J. Wang, and W. Chen, Visual servoing of a flexible aerial refueling boom with an eye-in-hand camera, IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 6282–6292, 2021. DOI: 10.1109/TSMC.2019.2957992.
  • Zhenxing Shen, Huijian Li, Xiaoning Liu, and Gengkai Hu, Thermal shock induced dynamics of a spacecraft with a flexible deploying boom, Acta Astronaut. (UK), vol. 141, pp. 123–131, 2017. DOI: 10.1016/j.actaastro.2017.10.004.
  • H. D. Yu, C. Z. Zhao, and H. Zheng, A higher-order variable cross-section viscoelastic beam element via ancf for kinematic and dynamic analyses of two-link flexible manipulators, Int. J. Appl. Mech., vol. 09, pp. 1–21, 2018.
  • K. Otsuka, Y. Wang, and K. Makihara, Absolute nodal coordinate formulation with vector-strain transformation for high aspect ratio wings, J. Comput. Nonlinear Dyn., vol. 16, no. 1, pp. 1–11, 2021. DOI: 10.1115/1.4049028.
  • P. Li, F. M. Gantoi, and A. A. Shabana, Higher order representation of the beam cross section deformation in large displacement finite element analysis, J. Sound Vib., vol. 330, no. 26, pp. 6495–6508, 2011. DOI: 10.1016/j.jsv.2011.07.013.
  • W. Yoo, S. Park, O. N. Dmitrochenko, and D. Y. Pogorelov, Verification of absolute nodal coordinate formulation in flexible multibody dynamics via physical experiments of large deformation problems, J. Comput. Nonlinear Dyn., vol. 1, no. 1, pp. 81–93, 2006. DOI: 10.1115/1.2008998.
  • L. P. Obrezkov, M. K. Matikainen, and A. B. Harish, A finite element for soft tissue deformation based on the absolute nodal coordinate formulation, Acta Mech., vol. 231, no. 4, pp. 1519–1538, 2020. DOI: 10.1007/s00707-019-02607-4.
  • V. P. Vallala, G. S. Payette, and J. N. Reddy, A spectral/hp nonlinear finite element analysis of higher-order beam theory with viscoelasticity, Int. J. Appl. Mech., vol. 04, no. 01, pp. 1250010–1250010, 2012. DOI: 10.1142/S1758825112001397.
  • D. Wang, J. Zhang, J. Z. Guo, and R. Fan, A closed-form nonlinear model for spatial timoshenko beam flexure hinge with circular cross-section, Chin. J. Aeronaut., vol. 32, no. 11, pp. 2526–2537, 2019. DOI: 10.1016/j.cja.2019.01.025.
  • Y. X. Huang, H. Tian, and Y. Zhao, Dynamic analysis of beam-cable coupled systems using chebyshev spectral element method, Acta Mech. Sin., vol. 33, no. 5, pp. 954–962, 2017. DOI: 10.1007/s10409-017-0651-1.
  • C. Liu, Q. Tian, and H. Y. Hu, Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate, Chin. J. Theoret. Appl. Mech., vol. 42, pp. 1197–1204, 2010.
  • Y. Zhao, Y. X. Huang, and M. Guo, A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on chebyshev polynomials theory, Compos. Struct., vol. 168, pp. 277–284, 2017. DOI: 10.1016/j.compstruct.2017.02.012.
  • C. H. Zhao, K. W. Bao, and Y. L. Tao, Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ancf beam elements based on common coefficients, Multibody Syst. Dyn., vol. 51, no. 4, pp. 475–495, 2021. DOI: 10.1007/s11044-020-09768-4.
  • S. M. Han, H. Benaroya, and T. Wei, Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib., vol. 5, pp. 935–988, 1999.
  • G. R. Cowper, The shear coefficient in timoshenko’s beam theory, Trans. ASME, J. Appl. Mech., vol. 33, no. 2, pp. 335–340, 1966. DOI: 10.1115/1.3625046.
  • B. F. Liu, H. C. Zhu, L. H. Shu, and Y. F. Wang, Finite element analysis for characteristics study of polyurethane isolator, Noise Vib. Control, vol. 1, pp. 131–135, 2011.
  • E. Carrera, M. Petrolo, and P. Nali, Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section, Shock Vib., vol. 18, no. 3, pp. 485–502, 2011. DOI: 10.1155/2011/706541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.