82
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Effects of Fusarium Mycotoxin Butenolide on Myocardial Mitochondria In Vitro

, &
Pages 79-85 | Received 21 May 2008, Accepted 06 Jul 2008, Published online: 01 Feb 2009

REFERENCES

  • M. Akao, B. O'Rourke, Y. Teshima, J. Seharaseyon, and E. Marban. (2003). Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ. Res. 92:186–194.
  • M. Akao, A. Ohler, B. O'Rourke, and E. Marban. (2001). Mitochondrial ATP sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88:1267–1275.
  • G. L. Andreu, R. Delgado, J. A. Velho, C. Curti, and A. E. Vercesi. (2005). Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition. Arch. Biochem. Biophys. 439:184–193.
  • J. S. Armstrong. (2006). Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28:253–260.
  • V. Battaglia, M. Salvi, and A. Toninello. (2005). Oxidative stress is responsible for mitochondrial permeability transition induction by salicylate in liver mitochondria. J. Biol. Chem. 280:33864–33872.
  • T. N. Bhavanishankar, H. P. Ramesh, and T. Shantha. (1988). Dermal toxicity of Fusarium toxins in combinations. Arch. Toxicol. 61:241–244.
  • G. C. Brown. (1992). Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J. 284:1–13.
  • E. Cadenas, and K. J. A. Davies. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29:222–230.
  • A. F. Cálgaro-Helena, K. F. Devienne, T. Rodrigues, D. J. Dorta, M. S. G. Raddi, W. Vilegas, S. A. Uyemura, A. C. Santos, and C. Curti. (2006). Effects of isocoumarins isolated from Paepalanthus bromelioides on mitochondria: uncoupling, and induction/inhibition of mitochondrial permeability transition. Chem. Biol. Interact. 161:155–164.
  • C. M. P. Cardoso, L. M. Almeida, and J. B. A. Custódio. (2004). Protection of tamoxifen against oxidation of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants. Chem. Biol. Interact. 148:149–161.
  • D. S. Cassarino, J. K. Parks, W. D. Jr. Parker, and J. P. BennettJr.. (1999). The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453:49–62.
  • R. J. Cole, and R. H. Cox. (1981). Handbook of toxic fungal metabolites. Academic Press, New York, p. 898.
  • F. Correa, N. Garcia, G. Garcia, and E. Chavez. (2003). Dehydroepiandrosterone as an inducer of mitochondrial permeability transition. J. Steroid Biochem. Mol. Biol. 87:279–284.
  • E. E. Creppy. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 127:19–28.
  • M. Crompton. (2003). On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr. Med. Chem. 10:1473–1484.
  • H. Esterbauer, R. J. Shauer, and H. Zollner. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81–128.
  • V. J. Feron, A. Kruysse, H. R. Immel, and H. P. Til. (1979). Repeated exposure to butenolide vapour: subacute study in Syrian golden hamsters. Toxicology 15:65–68.
  • C. Fiore, M. Salvi, M. Palermo, G. Sinigaglia, D. Armanini, and A. Toninello. (2004). On the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid. Biochim. Biophys. Acta 1658:195–201.
  • G. H. Hakimelahi, A. A. Moosavi–Movahedi, T. Sambaiah, J. L. Zhu, K. S. Ethiraj, M. Pasdar, and S. Hakimelahi. (2002). Reactions of purines-containing butenolides with L-cysteine or N-acetyl-L-cysteine as model biological nucleophiles: a potent mechanism-based inhibitor of ribonucleotide reductase caused apoptosis in breast carcinoma MCF7 cells. Eur. J. Med. Chem. 37:207–217.
  • A. P. Halestrap, G. P. McStay, and S. J. Clarke. (2002). The permeability transition pore complex: another view. Biochimie 84:153–166.
  • W. M. Haschek, L. A. Gumprech, G. Smith, M. E. Tumbleson, and P. D. Constable. (2001). Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ. Health Perspect. 109:251–257.
  • E. Haubruge, C. Chasseur, C. Debouck, F. Begaux, C. Suetens, F. Mathieu, V. Michel, C. Gaspar, M. Rooze, M. Hinsenkamp, P. Gillet, N. Nolard, and G. Lognay. (2001). The prevalence of mycotoxins in Kashin–Beck disease. Int. Orthop. 25:159–161.
  • J. S. Kim, L. He, and J. J. Lemasters. (2003). Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 304:463–470.
  • T. S. Kim, D. Jeong, B. Y. Yun, and I. Y. Kim. (2002). Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochem. Biophys. Res. Commun. 294:1130–1137.
  • I. Korichneva, J. Waka, and U. Hammerling. (2003). Regulation of the cardiac mitochondrial membrane potential by retinoids. J. Pharmacol. Exp. Ther. 305:426–433.
  • A. Kowaltowski, and A. E. Vercesi. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26:463–471.
  • A. J. Kowaltowski, R. F. Castilho, and A. E. Vercesi. (2001). Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495:12–15.
  • B. S. Kristal, B. K. Park, and B. P. Yu. (1996). 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J. Biol. Chem. 271:6033–6038.
  • F. S. Li, J. Y. Guan, and L. Y. Zou. (1986). Metabolic disorder of phospholipids and membrane damage in Keshan-disease model. J. Clin. Biochem. Nutr. 1:209–217.
  • F. S. Li, J. Y. Guan, L. M. Zou, Y. J. Duan, P. Ma, X. D. Quan, Q. Sun, L. Li, X. Y. Li, and S. L. Zhang. (1992). Keshan disease-an antioxidant ability deficient disease characterized by mitochondrial damage in myocardium. Chin. J. Contr. Endemic Dis. (in Chinese) 7:133–137.
  • F. S. Li, J. Y. Guan, L. M. Zou, Y. J. Yin, P. Ma, Q. Sun, L. Li, X. Y. Li, and Z. L. Zhang. (1990). Study of oxidative stress on mitochondrial membrane of myocardium deficient in selenium. Chin. J. Pathol. (in Chinese) 9:136–138.
  • G. S. Li, F. Wang, D. Kang, and C. Li. (1985). Keshan disease: an endemic cardiomyopathy in China. Hum. Pathol. 16:602–609.
  • X. D. Liao, A. H. Tang, Q. Chen, H. J. Jin, C. H. Wu, L. Y. Chen, and S. Q. Wang. (2003). Role of Ca2+ signaling in initiation of stretch–induced apoptosis in neonatal heart cells. Biochem. Biophys. Res. Commun. 310:405–411.
  • H. Ligeret, S. Barthelemy, R. Zini, J. P. Tillement, S. Labidalle, and D. Morin. (2004). Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore. Free Radic. Biol. Med. 36:919–929.
  • J. B. Liu, S. Q. Peng, H. Y. Yang, and G. Q. Wang. (2005). Effect of butenolide on the activities of complexes I-IV in the respiratory chain of myocardial mitochondria. J. Toxicol. (in Chinese) 19:18–20.
  • J. Liu, H. M. Shen, and C. N. Ong. (2001). Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia Miltiorrhiza–induced apoptosis in human hepatoma HepG2 cells. Life Sci. 69:1833–1850.
  • J. B. Liu, Y. M. Wang, S. Q. Peng, G. Han, Y. S. Dong, H. Y. Yang, C. H. Yan, and G. Q. Wang. (2007). Toxic effects of Fusarium mycotoxin butenolide on rat myocardium and primary culture of cardiac myocytes. Toxcon 50:357–364.
  • S. Y. Liu, Y. B. Ouyang, and F. Wang. (1990). Protective effects of Vitamin E and selenium on myocardial mitochondria in rats-a study on the pathogenic factors and pathogenesis of Keshan disease. Chin. J. Prevent. Med. (in Chinese) 24:214–216.
  • O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.
  • J. D. Ly, D. R. Grubb, and A. Lawen. (2003). The mitochondrial membrane potential (deltapsi(m)) in apoptosis: an update. Apoptosis 8:115–128.
  • D. Morin, S. Barthelemy, R. Zini, S. Labidalle, and J. P. Tillement. (2001). Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett. 495:131–136.
  • D. G. Nicholls. (2004). Mitochondrial membrane potential and aging. Aging Cell 3:35–40.
  • H. Ohkawa, N. Ohishi, and K. Yagi. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358.
  • S. Q. Peng, Y. J. Zhao, X. L. Yu, B. Z. Wang, Y. Yang, and J. S. Yang. (1995). T-2 toxin-induced ultrastructural pathology in rat heart and the protective effect of selenium. Bull. Acad. Military Med. Sci. (in Chinese) 19:1–5.
  • G. Petrosillo, N. Di Venosa, M. Pistolese, G. Casanova, E. Tiravanti, G. Colantuono, A. Federici, G. Paradies, and F. M. Ruggiero. (2006). Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia-reperfusion: role of cardiolipin. FASEB J. 20:269–276.
  • A. C. Santos, S. A. Uyemura, J. L. C. Lopes, J. N. Bazon, F. E. Minigatto, and C. Curti. (1998). Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic. Biol. Med. 24:1455–1461.
  • T. J. Schmidt. (1997). Helenanolide-type sesquiterpene lactones-III. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules. Bioorg. Med. Chem. 5:645–653.
  • D. L. Sudakin. (2003). Trichothecenes in the environment: relevance to human health. Toxicol. Lett. 143:97–107.
  • T. Takeda, M. Akao, M. Matsumoto-Ida, M. Kato, H. Takenaka, Y. Kihara, T. Kume, A. Akaike, and T. Kita. (2006). Serofendic acid, a novel substance extracted from fetal calf serum, protects against oxidative stress in neonatal rat cardiac myocytes. J. Am. Coll. Cardiol. 47:1882–1890.
  • U. Thrane. (2001). Developments in the taxonomy of Fusarium species based on secondary metabolites. In: B. A. Summerell, J. F. Leslie, D. Backhouse, W. L. Bryden, and L. W. Burgess. (Ed.), Fusarium: Paul E. Nelson Memorial Symposium, APS Press, St. Paul, MN, pp. 29–49.
  • Y. Tsujimoto, T. Nakagawa, and S. Shimizu. (2006). Mitochondrial membrane permeability transition and cell death. Biochim. Biophys. Acta 1757:1297–1300.
  • J. F. Turrens. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol. 552:335–344.
  • J. A. Velho, H. Okanobo, G. R. Degasperi, M. Y. Matsumoto, L. C. Alberici, R. G. Cosso, H. C. F. Oliveira, and A. E. Vercesi. (2006). Statins induce calcium-dependent mitochondrial permeability transition. Toxicology 219:124–132.
  • R. F. Vesonder, H. Gasdorf, and R. E. Peterson. (1993). Comparison of the cytotoxicities of Fusarium metabolites and Alternaria metabolite AAL-toxin to cultured mammalian cell lines. Arch. Environ. Contam. Toxicol. 24:473–477.
  • Y. M. Wang, S. Q. Peng, Q. Zhou, M. W. Wang, G. Han, C. H. Yan, H. Y. Yang, and G. Q. Wang. (2006). Role of mitochondria in cellular oxidative injuries induced by butenolide. Chin. J. Pharmacol. Toxicol. (in Chinese) 20:484–489.
  • F. Y. Yang. (2006). Keshan disease and mitochondrial cardiomyopathy. Sci. China C Life Sci. 49:513–518.
  • T. S. Yang. (1992). Myocardial metabolic derangement of Keshan disease (KD). J. Mol. Cell. Cardiol. 24:S42.
  • S. G. Yates. (1971). Toxin-producing fungi from fescue pasture. In: S. Kadis, A. Ciegler, and S. J. Ajl. (Ed.), Microbial toxins: Algal and fungal toxins. Vol. 7, Academic Press, New York and London, pp. 191–206.
  • T. Yoshizawa, A. Yamashita, and Y. Luo. (1994). Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl. Environ. Microbiol. 60:1626–1629.
  • W. X. Zhang, X. Y. Yin, H. Liu, Y. M. Chi, and W. H. Yu. (2001). Experimental study of myocardial injury induced by T-2 toxin. Chin. J. Endemiol. (in Chinese) 20:28–30.
  • D. Zhao, Q. Feng, X. Yan, C. Li, Y. Pan, and Q. Cui. (1993). Ultrastructural study of moniliformin induced lesions of myocardium in rats and mice. Biomed. Environ. Sci. 6:37–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.