364
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A simple protocol for estimating the acute toxicity of unresolved polar compounds from field-weathered oils

, , , , &
Pages 245-255 | Received 30 Nov 2023, Accepted 20 Jan 2024, Published online: 20 Feb 2024

References

  • Adams J, Bornstein JM, Munno K, Hollebone B, King T, Brown RS, Hodson PV. 2014. Identification of compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical fractionation. Environ Toxicol Chem. 33(4):825–835. doi: 10.1002/etc.2497.
  • Adams JE, Canadian Science Advisory Secretariat. 2017. Review of methods for measuring the toxicity to aquatic organisms of the water accommodated fraction (WAF) and chemically-enhanced water accommodated fraction (CEWAF) of petroleum. Canada: Fisheries and Oceans Canada.
  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM. 2012. Oil weathering after the deepwater horizon disaster led to the formation of oxygenated residues. Environ Sci Technol. 46(16):8799–8807. doi: 10.1021/es3015138.
  • Aurand D, Coelho G. 2005. Cooperative aquatic toxicity testing of dispersed oil and the chemical response to oil spills: ecological Effects Research Forum (CROSERF). Lusby (MD): Ecosystem Management & Associates, Inc. Technical Report. 07–03.
  • Barron MG, Podrabsky T, Ogle S, Ricker RW. 1999. Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms? Aquat. Toxicol. 46(3–4):253–268. doi: 10.1016/S0166-445X(98)00127-1.
  • Booth AM, Scarlett AG, Lewis CA, Belt ST, Rowland SJ. 2008. Unresolved Complex Mixtures (UCMs) of Aromatic Hydrocarbons: branched Alkyl Indanes and Branched Alkyl Tetralins are present in UCMs and accumulated by and toxic to, the mussel Mytilus edulis. Environ Sci Technol. 42(21):8122–8126. doi: 10.1021/es801601x.
  • Booth AM, Sutton PA, Lewis CA, Lewis AC, Scarlett A, Chau W, Widdows J, Rowland SJ. 2007. Unresolved complex mixtures of aromatic hydrocarbons: thousands of overlooked persistent, bioaccumulative, and toxic contaminants in mussels. Environ Sci Technol. 41(2):457–464. doi: 10.1021/es0615829.
  • Brakstad OG, Daling PS, Faksness LG, Almås IK, Vang SH, Syslak L, Leirvik F. 2014. Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar Pollut Bull. 84(1–2):125–134. doi: 10.1016/j.marpolbul.2014.05.027.
  • Brakstad OG, Nordtug T, Throne-Holst M. 2015. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull. 93(1–2):144–152. doi: 10.1016/j.marpolbul.2015.02.006.
  • Carls MG, Holland L, Larsen M, Collier TK, Scholz NL, Incardona JP. 2008. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat Toxicol. 88(2):121–127. doi: 10.1016/j.aquatox.2008.03.014.
  • Carls MG, Meador JP. 2009. A perspective on the toxicity of petrogenic PAHs to developing fish embryos related to environmental chemistry. Hum Ecol Risk Assess. 15(6):1084–1098. doi: 10.1080/10807030903304708.
  • Daling PS, Leirvik F, Almås IK, Brandvik PJ, Hansen BH, Lewis A, Reed M. 2014. Surface weathering and dispersibility of MC252 crude oil. Mar Pollut Bull. 87(1–2):300–310. doi: 10.1016/j.marpolbul.2014.07.005.
  • Daling PS, Strøm T. 1999. Weathering of oils at sea: model/field data comparisons. Spill Sci Technol Bull. 5(1):63–74. doi: 10.1016/S1353-2561(98)00051-6.
  • Di Toro DM, McGrath JA, Stubblefield WA. 2007. Predicting the toxicity of neat and weathered crude oil: toxic potential and the toxicity of saturated mixtures. Environ Toxicol Chem. 26(1):24–36. doi: 10.1897/06174r.1.
  • Esbaugh AJ, Mager EM, Stieglitz JD, Hoenig R, Brown TL, French BL, Linbo TL, Lay C, Forth H, Scholz NL, et al. 2016. The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. Sci Total Environ. 543(Pt A):644–651. doi: 10.1016/j.scitotenv.2015.11.068.
  • Faksness LG, Altin D, Hansen BH, Nordtug T. 2024. Use of TLM derived models to estimate toxicity of weathered MC252 oil based on conventional chemical data and the potential impact of unresolved polar components. Toxicol Mech Methods.
  • Faksness LG, Altin D, Nordtug T, Daling PS, Hansen BH. 2015. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill. Mar Pollut Bull. 91(1):222–229. doi: 10.1016/j.marpolbul.2014.12.002.
  • Faksness LG, Altin D, Størseth TR, Nordtug T, Hansen BH. 2020. Comparison of artificially weathered Macondo oil with field samples and evidence that weathering does not increase environmental acute toxicity. Mar Environ Res. 157:104928. doi: 10.1016/j.marenvres.2020.104928.
  • Farrington JW, Quinn JG. 2015. “Unresolved Complex Mixture” (UCM): a brief history of the term and moving beyond it. Mar Pollut Bull. 96(1–2):29–31. doi: 10.1016/j.marpolbul.2015.04.039.
  • Forth HP, Mitchelmore CL, Morris JM, Lipton J. 2017. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment. Environ Toxicol Chem. 36(6):1450–1459. doi: 10.1002/etc.3672.
  • French-McCay DP. 2002. Development and application of an oil toxicity and exposure model, OilToxEx. Enviro Toxic Chem. 21(10):2080–2094. doi: 10.1002/etc.5620211011.
  • Hall GJ, Frysinger GS, Aeppli C, Carmichael CA, Gros J, Lemkau KL, Nelson RK, Reddy CM. 2013. Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Mar Pollut Bull. 75(1–2):140–149. doi: 10.1016/j.marpolbul.2013.07.048.
  • Hansen BH, Farkas J, Nordtug T, Altin D, Brakstad OG. 2018. Does microbial biodegradation of water-soluble components of oil reduce the toxicity to early life stages of fish? Environ Sci Technol. 52(7):4358–4366. doi: 10.1021/acs.est.7b06408.
  • Hodson PV, Adams J, Brown RS. 2019. Oil toxicity test methods must be improved. Environ Toxicol Chem. 38(2):302–311. doi: 10.1002/etc.4303.
  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, Labenia JS, Laetz CA, et al. 2014. Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci USA. 111(15):E1510–E1518. doi: 10.1073/pnas.1320950111.
  • ISO. 1999. Water quality - Determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). Geneve: International Organization for Standardization.
  • Jager T, Altin D, Miljeteig C, Hansen BH. 2016. Stage-dependent and sex-dependent sensitivity to water-soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus. Environ Toxicol Chem. 35(3):728–735. doi: 10.1002/etc.3237.
  • Katz SD, Chen H, Fields DM, Beirne EC, Keyes P, Drozd GT, Aeppli C. 2022. Changes in chemical composition and copepod toxicity during petroleum photo-oxidation. Environ Sci Technol. 56(9):5552–5562. doi: 10.1021/acs.est.2c00251.
  • Landrum PF, Chapman PM, Neff J, Page DS. 2012. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies. Integr Environ Assess Manag. 8(2):217–230. doi: 10.1002/ieam.277.
  • Mager EM, Esbaugh AJ, Stieglitz JD, Hoenig R, Bodinier C, Incardona JP, Scholz NL, Benetti DD, Grosell M. 2014. Acute embryonic or juvenile exposure to deepwater horizon crude oil impairs the swimming performance of Mahi-Mahi (Coryphaena hippurus). Environ Sci Technol. 48(12):7053–7061. doi: 10.1021/es501628k.
  • McGrath J, Getzinger G, Redman AD, Edwards M, Martin Aparicio A, Vaiopoulou E. 2021. Application of the target lipid model to assess toxicity of heterocyclic aromatic compounds to aquatic prganisms. Environ Toxicol Chem. 40(11):3000–3009. doi: 10.1002/etc.5194.
  • McGrath JA, Di Toro DM. 2009. Validation of the target lipid model for toxicity assessment of residual petroleum constituents: monocyclic and polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 28(6):1130–1148. doi: 10.1897/08-271.1.
  • McGrath JA, Fanelli CJ, Toro DM, Parkerton TF, Redman AD, Paumen ML, Comber M, Eadsforth CV, Haan K. 2018. Re‐evaluation of target lipid model‐derived HC5 predictions for hydrocarbons. Environ Toxicol Chem. 37(6):1579–1593. doi: 10.1002/etc.4100.
  • McGrath JA, Parkerton TE, Hellweger FL, Di Toro DM. 2005. Validation of the narcosis target lipid model for petroleum products: gasoline as a case study. Environ Toxicol Chem. 24(9):2382–2394. doi: 10.1897/04-387r.1.
  • Meador JP, Nahrgang J. 2019. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: are we making unsupported assumptions? Environ Sci Technol. 53(19):11080–11092. doi: 10.1021/acs.est.9b02889.
  • Melbye AG, Brakstad OG, Hokstad JN, Gregersen IK, Hansen BH, Booth AM, Rowland SJ, Tollefsen KE. 2009. Chemical and toxicological characterization of an unresolved complex mixture-rich biodegraded crude oil. Environ Toxicol Chem. 28(9):1815–1824. doi: 10.1897/08-545.1.
  • Olsvik PA, Hansen BH, Nordtug T, Moren M, Holen E, Lie KK. 2011. Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol C Toxicol Pharmacol. 154(4):333–345.,. doi: 10.1016/j.cbpc.2011.07.002.
  • R-Core-Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R-Core-Team.www Document.
  • Redman AD, McGrath JA, Stubblefield WA, Maki AW, Di Toro DM. 2012. Quantifying the concentration of crude oil microdroplets in oil–water preparations. Environ Toxicol Chem. 31(8):1814–1822. doi: 10.1002/etc.1882.
  • Redman AD, Parkerton TF, Leon Paumen M, Butler JD, Letinski DJ, den Haan K. 2017. A re-evaluation of PETROTOX for predicting acute and chronic toxicity of petroleum substances. Environ Toxicol Chem. 36(8):2245–2252. doi: 10.1002/etc.3744.
  • Redman AD, Parkerton TF, McGrath JA, Di Toro DM. 2012. PETROTOX: An aquatic toxicity model for petroleum substances. Environ Toxicol Chem. 31(11):2498–2506. doi: 10.1002/etc.1982.
  • Rial D, Radović JR, Bayona JM, Macrae K, Thomas KV, Beiras R. 2013. Effects of simulated weathering on the toxicity of selected crude oils and their components to sea urchin embryos. J Hazard Mater. 260:67–73. doi: 10.1016/j.jhazmat.2013.05.004.
  • Scarlett A, Rowland SJ, Galloway TS, Lewis AC, Booth AM. 2008. Chronic sublethal effects associated with branched alkylbenzenes bioaccumulated by mussels. Environ Toxicol Chem. 27(3):561–567. doi: 10.1897/07-347.1.
  • Singer MM, Aurand D, Bragin GE, Clark JR, Coelho GM, Sowby ML, Tjeerdema RS. 2000. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 40(11):1007–1016. doi: 10.1016/S0025-326X(00)00045-X.
  • Sørensen L, Hansen BH, Farkas J, Donald CE, Robson WJ, Tonkin A, Meier S, Rowland SJ. 2019. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock. Environ Pollut. 251:212–220. doi: 10.1016/j.envpol.2019.04.126.
  • Sørensen L, McCormack P, Altin D, Robson WJ, Booth AM, Faksness L-G, Rowland SJ, Størseth TR. 2019. Establishing a link between composition and toxicity of offshore produced waters using comprehensive analysis techniques – A way forward for discharge monitoring? Sci Total Environ. 694:133682. doi: 10.1016/j.scitotenv.2019.133682.
  • Stefansson ES, Langdon CJ, Pargee SM, Blunt SM, Gage SJ, Stubblefield WA. 2016. Acute effects of non-weathered and weathered crude oil and dispersant associated with the Deepwater Horizon incident on the development of marine bivalve and echinoderm larvae. Environ Toxicol Chem. 35(8):2016–2028. doi: 10.1002/etc.3353.
  • Stout SA. 2015. Range in composition and weathering among floating macondo oils during the deepwater horizon oil spill. Seattle (WA): US Department of Commerce. NOAA Technical Report. US.
  • Wade TL, Sericano JL, Sweet ST, Knap AH, Guinasso NL. Jr., 2016. Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar Pollut Bull. 103(1–2):286–293. doi: 10.1016/j.marpolbul.2015.12.002.
  • Warnes GR. 2012. Includes, R source code and/or documentation contributed by: ben Bolker, Lodewijk Bonebakker, Robert Gentleman, Wolfgang Huber Andy Liaw, Thomas Lumley, Martin Maechler, Arni Magnusson, Steffen Moeller, Marc Schwartz and Bill Venables [WWW Document]. Gplots Var. R Program. Tools Plotting Data R Package. Vienna, Austria: R-Core-Team.