36
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Evolution of Gene Expression Studies in Drug Safety Assessment

, Ph.D., &
Pages 51-58 | Received 18 Aug 2005, Accepted 02 Nov 2005, Published online: 09 Oct 2008

REFERENCES

  • Afshari C. A., Nuwaysir E. F., Barrett J. C. Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res. 1999; 59: 4759–4760, [PUBMED], [INFOTRIEVE], [CSA]
  • Barrass N. C., Price R. J., Lake B. G., Orton T. C. Comparison of the acute and chronic mitogenic effects of the peroxisome proliferators methylclofenapate and clofibric acid in rat liver. Carcinogenesis 1993; 14: 1451–1456, [PUBMED], [INFOTRIEVE], [CSA]
  • Baker V. A., Harries H. M., Waring J. F., Duggan C. M., Ni H. N., Jolly R. A., Yoon L. W., DeSouza A. T., Schmid J. E., Brown R. H., Ulrich R. G., Rockett J. C. Clofibrate-induced gene expression changes in rat liver: A cross-laboratory analysis using membrane cDNA arrays. Environmen. Health Perspect. 2004; 112: 428–438, [CSA]
  • Bisgaard H. C., Nagy P., Santoni-Rugiu E., Thorgeirsson S. S. Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology 1996; 23: 62–70, [PUBMED], [INFOTRIEVE], [CSA]
  • Burczynski M. E., McMillian M., Ciervo J., Parker J. B., Dunn R. T., Hicken S., Farr S., Johnson M. D. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells. Toxicol. Sci. 2000; 58: 399–415, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Chevalier S., Roberts R A. Altered mRNA and protein expression in non-genotoxic hepatocarcinogenesis. Comments on Toxicology 2001; 7: 317–331, [CSA]
  • Columbano A., Endoh T., Denda A., Noguchi O., Nakae D., Hasegawa K., Ledda-Columbano G. M., Zedda A. I., Konishi Y. Effects of cell proliferation and cell death (apoptosis and necrosis) on the early stages of rat hepatocarcinogenesis. Carcinogenesis 1996; 17: 395–400, [PUBMED], [INFOTRIEVE], [CSA]
  • Cosulich S., Roberts R. Suppression of apoptosis by nongenotoxic carcinogens. Apoptosis in Toxicology, R. Roberts. Taylor & Francis, London 2000; 169–186
  • Crosby L. M., Hyder K. S., DeAngelo A. B., Kepler T. B., Gaskill B., Benavides G. R., Yoon L., Morgan K. T. Morphologic analysis correlates with gene expression changes in cultured F344 rat mesothelial cells. Toxicol. & Appl. Pharmacol. 2000; 169: 205–221, [CROSSREF], [CSA]
  • Crunkhorn S. E., Plant K. E., Gibson G. G., Kramer K., Lyon J., Lord P. G., Plant N. J. Gene expression changes in rat liver following exposure to liver growth agents: Role of Kupffer cells in xenobiotic-mediated liver growth. Biochem. Pharmacol. 2004; 67: 107–118, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Farber E. Clonal adaptation during carcinogenesis. Biochem. Pharmacol. 1990; 39: 1837–1846, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Farber E., Rubin H. Cellular adaptation in the origin and development of cancer. Cancer Res. 1991; 51: 2751–2761, [PUBMED], [INFOTRIEVE], [CSA]
  • Farr S., Dunn R. T. Gene expression applied to toxicology. Toxicol. Sci. 1999; 50: 1–9, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Freeman T. High throughput gene expression screening: Its emerging role in drug discovery. Med. Res. Rev. 2000; 20: 197–202, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Frueh F. W., Zanger U. M., Meyer U. A. Extent and character of Phenobarbital-mediated changes in gene expression in the liver. Molecular Pharmacol. 1997; 51: 363–369, [CSA]
  • Garcia-Allan C., Loughlin J., Orton T., Lord P. Changes in protein and mRNA levels of growth factor/growth factor receptors in rat livers after administration of phenobarbitone and methylclofenapate. Arch. Toxicol. 1997; 71: 409–415, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Garcia-Allan C., Lord P. G., Loughlin J. M., Orton T. C., Sidaway J. E. Identification of phenobarbitone-modulated genes in mouse liver by differential display. J. Biochem. & Molecular Toxicol. 2000; 14: 65–72, [CROSSREF], [CSA]
  • Gerhold D., Lu M., Xu J., Austin C., Caskey C. T., Rushmore T. Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol. Genomics 2001; 5: 161–170, [PUBMED], [INFOTRIEVE], [CSA]
  • Greene N. Computer software for risk assessment. J. Chem. Informatics & Comp. Sci. 1997; 37: 148–150, [INFOTRIEVE], [CROSSREF], [CSA]
  • Greene N., Judson P. N., Langowski J. J., Marchant C A. Knowledge-based expert systems for toxicity prediction: DEREK, StAR and METEOR, SAR QSAR. Environ. Res. 1998; 10: 299–314, [CSA]
  • Hamadeh H. K., Bushel P. R., Jayadev S., Martin K., DiSorbo O., Sieber S., Bennett L., Tennant R., Stoll R., Barrett J. C., Blanchard K., Paules R. S., Afshari C. A. Gene expression analysis reveals chemical-specific profiles. Toxicol. Sci. 2002; 67: 219–231, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Harries H. M., Fletcher S. T., Duggan C. M., Baker V. A. The use of genomics technology to investigate gene expression changes in cultured human liver cells. Toxicol. In Vitro 2001; 15: 399–405, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Hayes K. R., Bradfield C A. Advances in toxicogenomics. Chem. Res. Toxicol. 2005; 18: 403–414, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Hsieh L. L., Peraino C., Weinstein I. B. Expression of endogenous retrovirus-like sequences and cellular oncogenes during Phenobarbital treatment and regeneration in rat liver. Cancer Res. 1988; 48: 265–269, [PUBMED], [INFOTRIEVE], [CSA]
  • Hsieh L. L., Shinozuka H., Weinstein I. B. Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator. Br. J. Cancer 1991; 84: 815–819, [CSA]
  • Johnson D. E., Wolfgang H. I. Predicting human safety: Screening and computational approaches. Drug Discovery Today 2000; 5: 445–454, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kasper P., Oliver G., Silva Lima B., Singer T., Tweats D. Joint EFPIA/CHMP SWP workshop: The emerging use of omic technologies for regulatory non-clinical safety testing. Pharmacogenomics 2005; 6: 181–184, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kier L D., Neft R., Tang L., Suizu R., Cook T., Onsurez K., Tiegler K., Sakai Y., Ortiz M., Nolan T., Sankar U., Li A. P. Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutation Res. 2004; 549: 101–113, [PUBMED], [INFOTRIEVE], [CSA]
  • Kind C. N. The application of in-situ hybridization and immuno–histochemistry to problem resolution in drug development. Toxicol. Lett 2000; 112–113: 487–492, [CROSSREF], [CSA]
  • Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–650, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lash L. H., Hines R. N., Gonzalez F. J., Zacharewski T. R., Rothstein M. A. Genetics and susceptibility to toxic chemicals: Do you (or should you) know your genetic profile?. J. Pharmacol. Exp. Ther. 2003; 305: 403–409, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lawrence J. W., Li Y., Chen S., DeLuca J. G., Berger J. P., Umbenhauer D. R., Moller D. E., Zhou G. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expression. J. Biol. Chem. 2001; 276: 31521–31527, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lesko L. J., Salerno R. A., Spear B. B., Anderson D. C., Anderson T., Brazell C., Collins J., Dorner A., Essayan D., Gomez-Mancilla B., Hackett J., Huang S. M., Ide S., Killinger J., Leighton J., Mansfield E., Meyer R., Ryan S. G., Schmith V., Shaw P., Sistare F., Watson M., Worobec A. Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: Report of the first FDA-PWG-PhRMA-DruSafe Workshop. J. Clin. Pharmacol. 2003; 43: 342–358, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Liang P., Pardee A. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 257: 967–971, [PUBMED], [INFOTRIEVE], [CSA]
  • Lord P. G., Barne K. A., Kramer K., Bacon E. J., Mooney J., O'Brien S., Bugelski P. J. cDNA microarrays in investigative toxicology: A study of differential gene expression in compound induced cardiac hypertrophy. Comments on Toxicology 2001; 7: 381–392, [CSA]
  • Lord P. G. Progress in applying genomics in drug development. Toxicol. Lett. 2004; 149: 371–375, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Macgregor J. T., Farr S., Tucker J. D., Heddle J. A., Tice R. R., Turteltaub K. W. New molecular endpoints and methods for routine toxicity testing. Fundam. Appl. Toxicol. 1995; 26: 156–173, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory. 1981
  • Mattes W. B., Pettit S. D., Sansone S.-A., Bushel P. R., Waters M. D. Database development in toxicogenomics: Issues and efforts. Environ. Health Persp. 2004; 112: 495–505, [CSA]
  • McMillian M., Nie A. Y., Parker J. B., Leone A., Kemmerer M., Bryant S., Herlich J., Yieh L., Bittner A., Liu X., Wan J., Johnson M. D. Inverse gene expression patterns for macrophage activating hepatotoxicants and peroxisome proliferators in rat liver. Biochem. Pharmacol. 2004; 67: 2141–2165, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Milano J., McKay J., Dagenais C., Foster-Brown L., Pognan F., Gadient R., Jacobs R. T., Zacco A., Greenberg B., Ciaccio P. J. Modulation of Notch processing by γ -secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 2004; 82: 341–358, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Mori C., Komiyama M., Adachi T., Sakurai K., Nishimura D., Takashima K., Todaka E. Application of toxicogenomic analysis to risk assessment of delayed long-term effects of multiple chemicals, including endocrine disruptors in human fetuses. Environ. Health Persp. 2003; 111: 7–13, [CSA]
  • Nadadur S. S., Schladweiler M. C. J., Kodavanti U. P. A pulmonary rat gene array for screening altered expression profiles in air pollutant-induced lung injury. Inhalation Toxicol. 2000; 12: 1239–1254, [CROSSREF], [CSA]
  • Nuwaysir E. F., Bittner M., Trent J., Barrett J. C., Afshari C. A. Microarrays and toxicology: The advent of toxicogenomics. Mol. Carcinogen. 1999; 24: 153–159, [CROSSREF], [CSA]
  • Oberemm A., Onyon L., Gundert-Remy U. How can toxicogenomics inform risk assessment?. Toxicol. Appl. Pharmacol. 2005; 207: 592–598, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Orton T. C., Doughty S. E., Kalinowski A. E., Lord P. G., Wadsworth P. F. Expression of growth factors and growth factor receptors in the liver of C57BL/10J mice following administration of phenobarbitone. Carcinogenesis 1996; 17: 973–981, [PUBMED], [INFOTRIEVE], [CSA]
  • Rumsby P. C., Davies M. J., Price R. J., Lake B. G. Effect of some peroxisome proliferators on transforming growth factor-β 1 gene expression and insulin-like growth factor II/mannose-6-phosphate receptor gene expression in rat liver. Carcinogenesis 1994; 15: 419–421, [PUBMED], [INFOTRIEVE], [CSA]
  • Pennie W. D., Kimber I. Toxicogenomics; transcript profiling and potential application to chemical allergy. Toxicol. In Vitro 2002; 16: 319–326, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Pennie W. D., Woodyatt N. J., Aldridge T. C., Orphanides G. Application of genomics to the definition of the molecular basis for toxicity. Toxicol. Lett. 2001; 120: 353–358, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Pennie W., Pettit S. D., Lord P. G. Toxicogenomics in risk assessment: An overview of an HESI collaborative research program. Environ. Health Persp. 2004; 112: 417–419, [CSA]
  • Pennie W., Tugwood J. D., Oliver G. J., Kimber I. The principles and practices of toxicogenomics: Applications and opportunities. Toxicol. Sci. 2000; 54: 277–283, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Peters J. M., Cattley R. C., Gonzalez F. J. Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 1997; 18: 2029–2033, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Peters J. M., Aoyama T., Cattley R. C., Nobumitsu U., Hashimoto T., Gonzalez F. J. Role of peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver. Carcinogenesis 1998; 19: 1989–1994, [PUBMED], [INFOTRIEVE], [CSA]
  • Peterson R. L., Casciotti L., Block L., Goad M. E., Tong Z., Meehan J. T., Jordan R. A., Vinlove M. P., Markiewicz V. R., Weed C. A., Dorner A. J. Mechanistic toxicogenomic analysis of WAY-144122 administration in Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 2004; 196: 80–94, [PUBMED], [INFOTRIEVE], [CSA]
  • Petricoin E. F., Hackett J. L., Lesko L. J., Puri R. K., Gutman S. I., Chumakov K., Woodcock J., Feigal D. W., Zoon K. C., Sistare F. D. Medical applications of microarray technologies: A regulatory science perspective. Nature Genetics Suppl. 2002; 32: 474–479, [CROSSREF], [CSA]
  • Plant N., Barber P., Hornton E., Cockburn C.-L., Gibson G., Bugelski P., Lord P. Differential gene expression in rats following subacute exposure to the anti-convulsant sodium valproate. Toxicol. Appl. Pharmacol. 2002; 183: 127–134, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Rockett J. C., Esdaile D. J., Gibson G. G. Differential gene expression in drug metabolism and toxicology: Practicalities, problems and potential. Xenobiotica 1999; 29: 655–691, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Rockett J. C., Swales K. E., Esdaile D. J., Gibson G. G. Use of suppression-PCR subtractive hybridization to identify genes that demonstrate altered expression in male rat and guinea pig livers following exposure to Wy-14,643, a peroxisome proliferator and non-genotoxic hepatocarcinogen. Toxicology 2000; 144: 13–29, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Rodi C. P., Bunch R. T., Curtiss S. W., Kier L. D., Cabonce M. A., Davila J. C., Mitchell M. D., Alden C. L., Morris D. L. Revolution through genomics in investigative and discovery toxicology. Toxicol. Pathol. 1999; 27: 107–110, [PUBMED], [INFOTRIEVE], [CSA]
  • Schena M., Heller R. A., Theriault T. P., Konrad K., Lachenmeier E., Davis R. W. Microarrays: Biotechnology's discovery platform for functional genomics. Trends Biotech. 1998; 16: 301–306, [CROSSREF], [CSA]
  • Schulte-Hermann R. Adaptive liver growth induced by xenobiotic compounds: Its nature and mechanism. Arch. Toxicol. S. 1979; 2: 113–124, [CSA]
  • Schulte-Hermann R., Bursch W., Marian B., Grasl-Kraupp B. Active cell death (apoptosis) and cellular proliferation as indicators of exposure to carcinogens. IARC scientific publications 1999; 146: 273–285, [PUBMED], [INFOTRIEVE], [CSA]
  • Searfoss G. H., Jordan W. J., Calligaro D. O., Galbreath E. J., Schirtzinger L. M., Berridge B. R., Gao H., Higgins M. A., May P. C., Ryan T. P. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional γ -secretase inhibitor. J. Biol. Chem. 2003; 278: 46107–46116, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Stevens J. L., Liu H., Halleck M., Bowes R. C., Chen Q. M., van de Water B. Linking gene expression to mechanisms of toxicity. Toxicol. Letts. 2000; 112–113: 479–486, [CROSSREF], [CSA]
  • Suter L., Babiss L. E., Wheeldon E. B. Toxicogenomics in predictive toxicology in drug development. Chem. Biol., 11: 161–171, [CROSSREF], [CSA]
  • Thai S.-F., Allen J. W., DeAngelo A. B., George M. H., Fuscoe J. C. Detection of early gene expression changes by differential display in the livers of mice exposed to dichloroacetic acid. Carcinogenesis 2001; 22: 1317–1322, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Roberts R. A. A PPAR-alpha cDNA cloned from guinea pig liver encodes a protein with similar properties to the mouse PPARa: Implications for species differences in response to peroxisome proliferators. Arch. Toxicol. 1998; 72: 169–177, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Ulrich R. G. The toxicogenomics of nuclear receptor agonists. Curr. Op. Chem. Biol. 2003; 7: 505–510, [CROSSREF], [CSA]
  • Ulrich R., Friend S. H. “Toxicogenomics and drug discovery: Will new technologies help us produce better drugs?”. Nature Reviews. Drug Discovery 2002; 1: 84–88, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Ward J., Peters J., Perella C., Gonzalez F. Receptor and nonreceptor-mediated organ specific toxicity of DEHP in PPAR-alpha null mice. Toxicol. Pathol. 1998; 26: 240–246, [PUBMED], [INFOTRIEVE], [CSA]
  • Waring J. F., Gum R., Morfitt D., Jolly R. A., Ciurlionis R., Heindel M., Gallenberg L., Buratto B., Ulrich R. G. Identifying toxic mechanisms using DNA microarrays: Evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology 2002; 181–182: 537–550, [CROSSREF], [CSA]
  • Waring J. F., Ciurlionis R., Jolly R. A., Heindel M., Ulrich R. G. Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol. Lett. 2001a; 120: 359–368, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Waring J. F., Jolly R. A., Ciurlionis R., Lum P. Y., Praestgaard J. T., Morfitt D. C., Buratto B., Roberts C., Schadt E., Ulrich R. G. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol. 2001b; 175: 28–42, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Woodyatt N., Lambe K., Myers K., Tugwood J., Roberts R. The peroxisome proliferator (PP) response element (PPRE) upstream of the human acyl CoA oxidase gene is inactive in a sample human population: Significance for species differences in response to PPs. Carcinogenesis 1999; 20: 369–375, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Yamazaki K., Kuromitsu J., Tanaka I. Microarray analysis of gene expression changes in mouse liver induced by peroxisome proliferator-activated receptor α agonists. Biochem. Biophys. Res. Commun. 2002; 290: 1114–1122, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.