100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Energy field-based lane changing behavior interaction model and risk evaluation in the weaving section of expressway

ORCID Icon, , &
Pages 649-657 | Received 17 Jan 2024, Accepted 19 Mar 2024, Published online: 05 Apr 2024

References

  • Chen F, Wang J, Wu J, Chen X, Zegras PC. 2017. Monitoring road safety development at regional level: a case study in the ASEAN region. Accid Anal Prev. 106:437–449. doi:10.1016/j.aap.2017.07.016.
  • Dai S, Li L, Li Z. 2019. Modeling vehicle interactions via modified LSTM models for trajectory prediction. IEEE Access. 7:38287–38296. doi:10.1109/ACCESS.2019.2907000.
  • Gibson JJ, Crooks LE. 1938. A theoretical field-analysis of automobile-driving. Am Psychol. 51(3):453–471. doi:10.2307/1416145.
  • Huang H, Wang J, Fei C, Zheng X, Yang Y, Liu J, Wu X, Xu Q. 2020. A probabilistic risk assessment framework considering lane-changing behavior interaction. Sci China Inf Sci. 63(9):190203. doi:10.1007/s11432-019-2983-0.
  • Huang X, Sun J, Sun J. 2018. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks. Transp Res Part C Emerg Technol. 95:346–362. doi:10.1016/j.trc.2018.07.022.
  • Kiefer RJ, Flannagan CA, Jerome CJ. 2006. Time-to-collision judgments under realistic driving conditions. Hum Factors. 48(2):334–345. doi:10.1518/001872006777724499.
  • Li L, Gan J, Zhou K, Qu X, Ran B. 2020. A novel lane-changing model of connected and automated vehicles: using the safety potential field theory. Physica A. 559:125039. doi:10.1016/j.physa.2020.125039.
  • Li L, Sui X, Lian J, Yu F, Zhou Y. 2022. Vehicle interaction behavior prediction with self-attention. Sensors (Basel). 22(2):429. doi:10.3390/s22020429.
  • Li Y, Chen Y. 2018. A new method based on field strength for road infrastructure risk assessment. J Adv Transp. 2018:1–13. doi:10.1155/2018/6379146.
  • Ma Y, Zhang P, Hu B. 2019. Active lane-changing model of vehicle in B-type weaving region based on potential energy field theory. Physica A. 535:122291. doi:10.1016/j.physa.2019.122291.
  • Mammar S, Glaser S, Netto M, Blosseville J-M. 2004. Time-to-line crossing and vehicle dynamics for lane departure avoidance. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749). Washington, WA, USA: IEEE. p. 618–623. [accessed 2024 Feb 17]. http://ieeexplore.ieee.org/document/1398972/.
  • Miller R, Huang Q. 2002. An adaptive peer-to-peer collision warning system. In Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No. 02CH37367). Vol. 1. IEEE. p. 317–321. [accessed 2024 Jan 2]. https://ieeexplore.ieee.org/abstract/document/1002718/. doi:10.1109/VTC.2002.1002718.
  • Mullakkal-Babu FA, Wang M, He X, van Arem B, Happee R. 2020. Probabilistic field approach for motorway driving risk assessment. Transp Res Part C Emerg Technol. 118:102716. doi:10.1016/j.trc.2020.102716.
  • Nakaoka M, Raksincharoensak P, Nagai M. 2008. Study on forward collision warning system adapted to driver characteristics and road environment. In 2008 International Conference on Control, Automation and Systems. IEEE. p. 2890–2895. [accessed 2024 Jan 2]. https://ieeexplore.ieee.org/abstract/document/4694250/.
  • Ngoduy D, Lee S, Treiber M, Keyvan-Ekbatani M, Vu HL. 2019. Langevin method for a continuous stochastic car-following model and its stability conditions. Transp Res Part C Emerg Technol. 105:599–610. doi:10.1016/j.trc.2019.06.005.
  • Ni D, Zhang C, Wang H. 2011. A unified perspective on traffic flow theory, Part III: validation and Benchmarking. In ICCTP 2011. Nanjing, China: American Society of Civil Engineers. p. 4264–4286. [accessed 2024 Jan 2]. doi:10.1061/41186(421)422.
  • Ni D. 2011a. A Unified Perspective on Traffic Flow Theory, Part I: the Field Theory. In ICCTP 2011. Nanjing, China: American Society of Civil Engineers. p. 4227–4243. [accessed 2024 Jan 2]. doi:10.1061/41186(421)420.
  • Ni D. 2011b. A Unified Perspective on Traffic Flow Theory, Part II: the Unified Diagram. In ICCTP 2011. Nanjing, China: American Society of Civil Engineers. p. 4244–4263. [accessed 2024 Jan 2]. doi:10.1061/41186(421)421.
  • Pilutti T, Ulsoy AG. 2003. Fuzzy-logic-based virtual rumble strip for road departure warning systems. IEEE Trans Intell Transp Syst. 4(1):1–12. doi:10.1109/TITS.2003.811810.
  • Rahman MS, Abdel-Aty M. 2018. Longitudinal safety evaluation of connected vehicles’ platooning on expressways. Accid Anal Prev. 117:381–391. doi:10.1016/j.aap.2017.12.012.
  • Risack R, Mohler N, Enkelmann W. 2000. A video-based lane keeping assistant. In Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511). p. 356–361. [accessed 2024 Jan 10]. https://ieeexplore.ieee.org/abstract/document/898369.
  • Saifuzzaman M, Zheng Z, Haque MM, Washington S. 2015. Revisiting the task–capability interface model for incorporating human factors into car-following models. Transp Res B-Meth. 82:1–19. doi:10.1016/j.trb.2015.09.011.
  • Sarvi M. 2013. Heavy commercial vehicles-following behavior and interactions with different vehicle classes. J Adv Transp. 47(6):572–580. doi:10.1002/atr.182.
  • Shangguan Q, Wang J, Fu T, Fang S, Fu L. 2023. An empirical investigation of driver car-following risk evolution using naturistic driving data and random parameters multinomial logit model with heterogeneity in means and variances. Anal Methods Accid R. 38:100265. doi:10.1016/j.amar.2022.
  • Sheu J-B, Ritchie SG. 2001. Stochastic modeling and real-time prediction of vehicular lane-changing behavior. Transp. Res B-Meth. 35(7):695–716. doi:10.1016/S0191-2615(00)00015-1.
  • Shi X, Wong YD, Li MZ-F, Palanisamy C, Chai C. 2019. A feature learning approach based on XGBoost for driving assessment and risk prediction. Accid Anal Prev. 129:170–179. doi:10.1016/j.aap.2019.05.005.
  • Tao P. 2011. Car-following model based on artificial potential field. J Southeast U: Nat Sci Ed. 41(4):854–858. doi:10.3969/j.issn.1001-0505.2011.04.037.
  • Van Winsum W. 1999. The human element in car following models. Transp Res Part F Traffic Psychol Behav. 2(4):207–211. doi:10.1016/S1369-8478(00)00008-5.
  • Wang D, Yang S, Chu L. 2004. Modeling car-following dynamics during the starting and stopping process based on a spring system model. Tsinghua Sci Technol. 9(6):643–652.
  • Wang J, Wu J, Li Y. 2015. The driving safety field based on driver–vehicle–road interactions. IEEE Trans Intell Transp. Syst. 16(4):2203–2214. doi:10.1109/TITS.2015.2401837.
  • Wang S, Zhang J, Zhang J. 2018. Artificial potential field algorithm for path control of unmanned ground vehicles formation in highway. Electron Lett. 54(20):1166–1168. doi:10.1049/el.2018.5018.
  • Wei D, Liu H. 2013. Analysis of asymmetric driving behavior using a self-learning approach. Transp. Res B-Meth. 47:1–14. doi:10.1016/j.trb.2012.09.003.
  • Yang LH, Zhang C, Qiu X, Li S, Wang H. 2019. Research progress on car-following models. J Traffic Transp Eng. 19:125–138. doi:10.19818/j.cnki.1671-1637.2019.05.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.