2,155
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: A Promising Medication for Chronic Obstructive Pulmonary Disease?

ORCID Icon, , &
Pages 148-156 | Received 08 Nov 2017, Accepted 19 Jan 2018, Published online: 09 Mar 2018

References

  • Vogelmeier CF, Criner GJ, Martínez FJ, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Chen R, Decramer M, Fabbri LM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD Executive Summary. Arch Bronconeumol. 2017;53:128–149. doi:10.1016/j.arbres.2017.02.001.
  • Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMID:27733282.
  • Sin DD, Anthonisen NR, Soriano JB, Agusti AG. Mortality in COPD: Role of comorbidities. Eur Respir J. 2006;28:1245–1257. doi:10.1183/09031936.00133805. PMID:17138679.
  • Rabinovich RA, MacNee W. Chronic obstructive pulmonary disease and its comorbidities. Br J Hosp Med. 2011;72:137–145. doi:10.12968/hmed.2011.72.3.137.
  • Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance-a review. J Clin Pathol. 1983;36:938–947. doi:10.1136/jcp.36.8.938. PMID:6308066.
  • Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun. 1992;183:1090–1096. doi:10.1016/S0006-291X(05)80302-X. PMID:1567388.
  • Shrikrishna D, Astin R, Kemp PR, Hopkinson NS. Renin–angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clin Sci. 2012;123:487–498. doi:10.1042/CS20120081. PMID:22757959.
  • Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, Pauwels R, Praet M, Siragy HM, de Gasparo M. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol. 2001;115:117–124. doi:10.1007/s004180000235. PMID:11444146.
  • Passos-Silva DG, Brandan E, Santos RA. Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol Sci. 2015;36:310–320. doi:10.1016/j.tips.2015.03.001. PMID:25847571.
  • Bader M. Tissue renin–angiotensin–aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50:439–465. doi:10.1146/annurev.pharmtox.010909.105610. PMID:20055710.
  • Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100:8258–8263. doi:10.1073/pnas.1432869100. PMID:12829792.
  • Gironacci MM, Adamo HP, Corradi G, Santos RA, Ortiz P, Carretero OA. Angiotensin (1–7) induces MAS receptor internalization. Hypertension. 2011;58:176–181. doi:10.1161/HYPERTENSIONAHA.111.173344. PMID:21670420.
  • Maron BA, Leopold JA. Emerging concepts in the molecular basis of pulmonary arterial hypertension part II: Neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of pulmonary arterial hypertension. Circulation. 2015;131:2079–2091. doi:10.1161/CIRCULATIONAHA.114.006980. PMID:26056345.
  • Der Sarkissian S, Grobe JL, Yuan L, Narielwala DR, Walter GA, Katovich MJ, Raizada MK. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension. 2008;51:712–718. doi:10.1161/HYPERTENSIONAHA.107.100693. PMID:18250366.
  • Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol. 2007;292:H736–H742. doi:10.1152/ajpheart.00937.2006. PMID:17098828.
  • Santos RA, Ferreira AJ, Simões E Silva AC. Recent advances in the angiotensin-converting enzyme 2 angiotensin (1–7)-Mas axis. Exp Physiol. 2008;93:519–527. doi:10.1113/expphysiol.2008.042002. PMID:18310257.
  • Cole-Jeffrey CT, Liu M, Katovich MJ. ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. J Cardiovasc Pharmacol. 2015;66:540–550. doi:10.1097/FJC.0000000000000307. PMID:26322922.
  • Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005;289:H1560–H1566. doi:10.1152/ajpheart.00941.2004. PMID:15951342.
  • Shenoy V, Ferreira AJ, Qi Y, Fraga-Silva RA, Díez-Freire C, Dooies A, Jun JY, Sriramula S, Mariappan N, Pourang D, et al. The angiotensin-converting enzyme 2/angiogenesis-(1–7)/mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med. 2010;182:1065–1072. doi:10.1164/rccm.200912-1840OC. PMID:20581171.
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi:10.1038/nature02145. PMID:14647384.
  • Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X, Ju X, Liang Z, Liu Q, Zhao Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5:3594. doi:10.1038/ncomms4594. PMID:24800825.
  • Liu X, Yang N, Tang J, Liu S, Luo D, Duan Q, Wang X. Downregulation of ACE 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res. 2014;185:64–71. doi:10.1016/j.virusres.2014.03.010. PMID:24662240.
  • Marshall RP. The pulmonary renin-angiotensin system. Curr Pharm Des 2003;9:715–722. doi:10.2174/1381612033455431. PMID:12570789.
  • Chao J, Donham P, van Rooijen N, Wood JG, Gonzalez NC. Monocyte chemoattractant protein-1 released from alveolar macrophages mediates the systemic inflammation of acute alveolar hypoxia. Am J Respir Cell Mol Biol. 2011;45:53–61. doi:10.1165/rcmb.2010-0264OC. PMID:20813992.
  • Kaparianos A, Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18:3506–3515. doi:10.2174/092986711796642562. PMID:21756232.
  • Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2:247–257. doi:10.1002/emmm.201000080. PMID:20597104.
  • Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–242. doi:10.1183/09031936.06.00053805. PMID:16816350.
  • Chilosi M, Poletti V, Rossi A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir Res. 2012;13:3. doi:10.1186/1465-9921-13-3. PMID:22235752.
  • Jankowich MD, Rounds SIS. Combined pulmonary fibrosis and emphysema syndrome: a review. Chest. 2012;141:222–231. doi:10.1378/chest.11-1062. PMID:22215830.
  • Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012;44:465–468. doi:10.1016/j.biocel.2011.11.019. PMID:22155301.
  • Kϕnigshoff M, Wilhelm A, Jahn A, Sedding D, Amarie OA, Eul B, Seeger W, Fink L, Gόnther A, Eickelberg O, Rose F. The angiotensin II receptor 2 is expressed and mediates angiotensin II signaling in lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2007;37:640–650. doi:10.1165/rcmb.2006-0379TR. PMID:17630322.
  • Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am. J. Respir. Crit. Care Med. 2000;161:1999–904. doi:10.1164/ajrccm.161.6.9907004. PMID:10852780.
  • Uhal BD, Kim JK, Li X, Molina-Molina M. Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr. Pharm. Des. 2007;13:1247–1256. doi:10.2174/138161207780618885. PMID:17504233.
  • Abdul-Hafez A, Shu R, Uhal BD. JunD and HIF-1α mediate transcriptional activation of angiotensinogen by TGF-β1 in human lung fibroblasts. FASEB J. 2009;23:1655–1662. doi:10.1096/fj.08-114611. PMID:19211927.
  • Hussain A, Wyatt AW, Wang K, Bhandaru M, Biswas R, Avram D, Föller M, Rexhepaj R, Friedrich B, Ullrich S, et al. SGK1-dependent upregulation of connective tissue growth factor by angiotensin II. Kidney Blood Press. Res. 2008;31:80–86. doi:10.1159/000119703. PMID:18319604.
  • Renzoni EA, D, Abraham J, Howat S, Shi-Wen X, Sestini P, Bou-Charios G, Wells AU, Veeraraghavan S, Nicholson AG, Denton CP, et al. Gene expression profiling reveals novel TGFβ targets in adult lung fibroblasts. Respiratory Research. 2004;5:24. doi:10.1186/1465-9921-5-24. PMID:15571627.
  • Meng Y, Meng Y, Li X, Cai SX, Tong WC, Cheng YX. Perindopril and losartan attenuate bleomycin A5-induced pulmonary fibrosis in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28:919–924. PMID:18583228.
  • Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax. 2004;59:31–38. doi:10.1136/thx.2003.000893. PMID:14694243.
  • Molteni A, Wolfe LF, Ward WF, Tsao CH, Molteni LB, Veno P, Fish BL, Taylor JM, Quintanilla N, Herndon B, et al. Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr. Pharm. Des. 2007;13:1307–1316. doi:10.2174/138161207780618777. PMID:17506716.
  • Chen N, Li JJ, Xue XD. Effect of losartan on lung fibrosis in neonatal rats with hyperoxia-induced chronic lung disease. Zhongguo Dang Dai Er Ke Za Zhi. 2007;9:591–594. PMID:18082049.
  • Podowski M, Calvi C, Metzger S, Misono K, Poonyagariyagorn H, Lopez-Mercado A, Ku T, Lauer T, McGrath-Morrow S, Berger A, et al. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice. J Clin Invest. 2012;122:229–240. doi:10.1172/JCI46215. PMID:22182843.
  • Uhal BD, Dang M, Dang V, Llatos R, Cano E, Abdul-Hafez A, Markey J, Piasecki CC, Molina-Molina M. Cell cycle dependence of ACE-2 explains downregulation in idiopathic pulmonary fibrosis. Eur Respir J. 2013;42:198–210. doi:10.1183/09031936.00015612. PMID:23100504.
  • Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2008;295:L178–L185. doi:10.1152/ajplung.00009.2008. PMID:18441099.
  • Wu H, Li Y, Wang Y, Xu D, Li C, Liu M, Sun X, Li Z. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis in rats. Int J Med Sci. 2014;11:578–586. doi:10.7150/ijms.8365. PMID:24782646.
  • Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.
  • Seeger W, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs S, et al. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D109–D116. doi:10.1016/j.jacc.2013.10.036. PMID:24355635.
  • Shino MY, Lynch JP 3rd, Saggar R, Abtin F, Belperio JA, Saggar R. Pulmonary hypertension complicating interstitial lung disease and COPD. Semin Respir Crit Care Med. 2013;34:600–619. doi:10.1055/s-0033-1356548. PMID:24037628.
  • Maron BA, Leopold JA. The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension. Pulm Circ. 2014;4:200–210. doi:10.1086/675984. PMID:25006439.
  • Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, Loscalzo J, Leopold JA. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126:963–974. doi:10.1161/CIRCULATIONAHA.112.094722. PMID:22787113.
  • Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15:277–283. doi:10.1093/eurjhf/hfs173. PMID:23111998.
  • de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel E, et al. Dysregulated renin-angiotensin- aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med 2012;186:780–789. doi:10.1164/rccm.201203-0411OC. PMID:22859525.
  • Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, Li Z, Su J, Sun L. ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats. Lung. 2013;191:327–336. doi:10.1007/s00408-013-9470-8. PMID:23652350
  • Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J. 2003;21:347–360. doi:10.1183/09031936.03.00405703. PMID:12608452.
  • Man WD, Hopkinson NS, Harraf F, Nikoletou D, Polkey MI, Moxham J. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease. Thorax. 2005;60:718–722. doi:10.1136/thx.2005.040709. PMID:15923239.
  • Man WD, Soliman MG, Nikoletou D, Harris ML, Rafferty GF, Mustfa N, Polkey MI, Moxham J. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax. 2003;58:665–669. doi:10.1136/thorax.58.8.665. PMID:12885979.
  • Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153:976–980. doi:10.1164/ajrccm.153.3.8630582. PMID:8630582.
  • Shrikrishna D, Hopkinson NS. Chronic obstructive pulmonary disease: consequences beyond the lung. Clin Med. 2012;12:71–74. doi:10.7861/clinmedicine.12-1-71.
  • Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J. 1997;10:417–423. doi:10.1183/09031936.97.10020417. PMID: 9042643.
  • Swallow EB, Reyes D, Hopkinson NS, Man WD, Porcher R, Cetti EJ, Moore AJ, Moxham J, Polkey MI. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62:115–120. doi:10.1136/thx.2006.062026. PMID:17090575.
  • Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest. 2005;115:451–458. doi:10.1172/JCI22324. PMID:15650772.
  • Acuña MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, Muñoz-Canoves P, Santos RA, Cabello-Verrugio C, Brandan E. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-b signalling. Hum Mol Genet. 2014;23:1237–1249. doi:10.1093/hmg/ddt514. PMID:24163134.
  • Sabharwal R, Cicha MZ, Sinisterra RD, De Sousa FB, Santos RA, Chapleau MW. Chronic oral administration of Ang-(1–7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy. Clin Sci. (Lond.) 2014;127:101–109. doi:10.1042/CS20130602. PMID:24502705.
  • Riquelme C, Acuña MJ, Torrejón J, Rebolledo D, Cabrera D, Santos RA. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis. PLoS ONE. 2014;9:e93449. doi:10.1371/journal.pone.0093449. PMID:24695436.
  • Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. Expression of the Mas receptor is upregulated in skeletal muscle wasting. Histochem. Cell Biol. 2015;143:131–141. doi:10.1007/s00418-014-1275-1. PMID:25208653.
  • Cisternas F, Morales MG, Meneses C, Simon F, Brandan E, Abrigo J, Vazquez Y, Cabello-Verrugio C. Angiotensin-(1–7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci. 2015;128:307–319. doi:10.1042/CS20140215. PMID:25222828.
  • Morales MG, Abrigo J, Meneses C, Simon F, Cisternas F, Rivera JC, Vazquez Y, Cabello-Verrugio C. The Ang-(1–7)/Mas-1 axis attenuates the expression and signalling of TGF-b1 induced by AngII in mouse skeletal muscle. Clin Sci. 2014;127:251–264. doi:10.1042/CS20130585. PMID:24588264.
  • Baudin B. Angiotensin I-converting enzyme gene polymorphism and drug response. Clin Chem Lab Med. 2000;38:853–856. doi:10.1515/CCLM.2000.123. PMID:11097339.
  • Kanazawa H, Okamoto T, Hirata K, Yoshikawa J. Deletion polymorphisms in the angiotensin converting enzyme gene are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162:1235–1238. doi:10.1164/ajrccm.162.4.9909120. PMID:11029323.
  • Busquets X, MacFarlane NG, Heine-Suner D, Morla M, Torres-Juan L, Iglesias A, Lladó J, Sauleda J, Agustí AG. Angiotensin-converting-enzyme gene polymorphisms, smoking and chronic obstructive pulmonary disease. Int J Chronic Obstruct Pulm Dis. 2007;2:329–334.
  • Tkacova R, Joppa P. Angiotensin-converting enzyme genotype and C-reactive protein in patients with COPD. Eur Respir J. 2007;29:816–817. doi:10.1183/09031936.00147506. PMID:17400881.
  • Mlak R, Homa-Mlak I, Powrózek T, Mackiewicz B, Michnar M, Krawczyk P, Dziedzic M, Rubinsztajn R, Chazan R, Milanowski J, et al. Impact of I/D polymorphism of ACE gene on risk of development and course of chronic obstructive pulmonary disease. Arch Med Sci. 2016;12:279–287. doi:10.5114/aoms.2015.50757. PMID:27186170.
  • Kang SW, Kim SK, Chung JH, Jung HJ, Kim KI, Kim J, Ban JY. Genetic polymorphism of angiotensin-converting enzyme and chronic obstructive pulmonary Disease risk: An updated meta-analysis. Biomed Res Int. 2016;2016:7636123. Epub 2016 Oct 18. doi:10.1155/2016/7636123. PMID:27830153.
  • Nong Z, Stassen JM, Moons L, Collen D, Janssens S. Inhibition of tissue angiotensin-converting enzyme with quinapril reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling. Circulation. 1996;94:1941–1947. doi:10.1161/01.CIR.94.8.1941. PMID:8873672.
  • Llorens-Cortes C, Greenberg B, Huang H, Corvol P. Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension. 1994;24:538–548. doi:10.1161/01.HYP.24.5.538. PMID:7525476.
  • Molteni A, Ward WF, Tsao CH, Taylor J, Small W Jr, Brizio- Molteni L, Veno PA. Cytostatic properties of some angiotensin I converting enzyme inhibitors and of angiotensin II type I receptor antagonists. Curr Pharm Des. 2003;9:751–761. doi:10.2174/1381612033455396. PMID:12570792.
  • Wosten-van Asperen RM, Lutter R, Haitsma JJ, Merkus MP, van Woensel JB, van der Loos CM, Florquin S, Lachmann B, Bos AP. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin. Eur Respir J. 2008;31:363–371. doi:10.1183/09031936.00060207. PMID:17959639.
  • Suzuki M, Teramoto S, Katayama H, Ohga E, Matsuse T, Ouchi Y. Effects of angiotensin-converting enzyme (ACE) inhibitors on oxygen radical production and generation by murine lungalveolar macrophages. J Asthma. 1999;36:665–670. doi:10.3109/02770909909055418. PMID:10609621.
  • Wang R, Zagariya A, Ibarra-Sunga O, Gidea C, Ang E, Deshmukh S, Chaudhary G, Baraboutis J, Filippatos G, Uhal BD. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol. 1999;276:L885–L889. PMID:10330045.
  • Forth R, Montgomery H. ACE in COPD: a therapeutic target? Thorax. 2003;58:556–558. doi:10.1136/thorax.58.7.556. PMID:12832663.
  • Mancini GB, Etminan M, Zhang B, Levesque LE, FitzGerald JM, Brophy JM. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2006;47:2554–2560. doi:10.1016/j.jacc.2006.04.039. PMID:16781387.
  • Mortensen EM, Copeland LA, Pugh MJ, Restrepo MI, de Molina RM, Nakashima B, Anzueto A. Impact of statins and ACE inhibitors on mortality after COPD exacerbations. Respir Res. 2009;10:45. doi:10.1186/1465-9921-10-45. PMID:19493329.
  • Paulin P, Maritano Furcada J, Ungaro CM, Bendelman G, Waisman GD, Castro HM, Giunta DH, Ferreyro BL. Effect of angiotensin 2 receptor blockers on chronic obstructive lung disease mortality: A retrospective cohort study. Pulm Pharmacol Ther. 2017;44:78–82. doi:10.1016/j.pupt.2017.03.007. PMID:28315489.
  • Petersen H, Sood A, Meek PM, Shen X, Cheng Y, Belinsky SA, Owen CA, Washko G, Pinto-Plata V, Kelly E, et al. Rapid lung function decline in smokers is a risk factor for COPD and is attenuated by angiotensin-converting enzyme inhibitor use. Chest. 2014;145:695–703. doi:10.1378/chest.13-0799. PMID:24008986.
  • Ho TW, Tsai YJ, Ruan SY, Huang CT, Lai F, Yu CJ;HINT Study Group. In-hospital and one-year mortality and their predictors in patients hospitalized for first-ever chronic obstructive pulmonary disease exacerbations: a nationwide population-based study. PLoS One. 2014;9:e114866. doi:10.1371/journal.pone.0114866. PMID:25490399.
  • Di Marco F, Guazzi M, Vicenzi M, Santus P, Cazzola M, Pappalettera M, Castellotti P, Centanni S. Effect of enalapril on exercise cardiopulmonary performance in chronic obstructive pulmonary disease: a pilot study. Pulm Pharmacol Ther. 2010;23:159–164. doi:10.1016/j.pupt.2010.01.004. PMID:20096799.
  • Curtis KJ, Meyrick VM, Mehta B, Haji GS, Li K, Montgomery H, Man WD, Polkey MI, Hopkinson NS. Angiotensin-converting enzyme inhibition as an adjunct to pulmonary rehabilitation in COPD. Am J Respir Crit Care Med. 2016;194:1349–1357. doi:10.1164/rccm.201601-0094OC. PMID:27248440.
  • Robert A. Wise. Efficacy of Losartan in Preventing Progression of COPD [online], 2017. Available from:< https://.gov/ct2/show/NCT00720226>, [accessed 05/11/2017].
  • Zeng LH, HuYX, Liu L, Zhang M, Cui H. Impact of beta2-agonists, beta-blockers, and their combination on cardiac function in elderly male patients with chronic obstructive pulmonary disease. Clin Interv Aging. 2013;8:1157–1165. PMID:24072964.
  • Kim J, Lee JK, Heo EY, Chung HS, Kim DK. The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2159–2166. doi:10.2147/COPD.S104097. PMID:27672320.
  • Parikh MA, Aaron CP, Hoffman EA, Schwartz JE, Madrigano J, Austin JHM, Kalhan R, Lovasi G, Watson K, Stukovsky KH, et al. Angiotensin-Converting Inhibitors and Angiotensin II Receptor Blockers and Longitudinal Change in Percent Emphysema on Computed Tomography. The Multi-Ethnic Study of Atherosclerosis Lung Study. Ann Am Thorac Soc. 2017;14:649–658.
  • Ekström MP, Hermansson AB, Ström KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:715–720. doi:10.1164/rccm.201208-1565OC. PMID:23328521.
  • Kanazawa H, Hirata K, Yoshikawa J. Effects of captopril administration on pulmonary haemodynamics and tissue oxygenation during exercise in ACE gene subtypes in patients with COPD: a preliminary study. Thorax. 2003;58:629–631. doi:10.1136/thorax.58.7.629. PMID:12832683.
  • Bertoli L, Lo Cicero S, Busnardo I, Rizzato G, Montanari G. Effects of captopril on hemodynamics and blood gasses in chronic obstructive lung disease with pulmonary hypertension. Respiration. 1986;49:251–256. doi:10.1159/000194887. PMID:3520734.
  • Ozyilmaz E, Kokturk N, Teksut G, Tatlicioglu T. Unsuspected risk factors of frequent exacerbations requiring hospital admission in chronic obstructive pulmonary disease. Int J Clin Pract. 2013;67:691–697. doi:10.1111/ijcp.12150. PMID:23758448.
  • Kon SS, Jolley CJ, Shrikrishna D, Montgomery HE, Skipworth JR, Puthucheary Z, Moxham J, Polkey MI, Man WD, Hopkinson NS. ACE and response to pulmonary rehabilitation in COPD: two observational studies. BMJ Open Respir Res. 2017;4:e000165. doi:10.1136/bmjresp-2016-000165. PMID:28321311.
  • Shrikrishna D, Tanner RJ, Lee JY, Natanek A, Lewis A, Murphy PB, Hart N, Moxham J, Montgomery HE, Kemp PR, et al. A randomized controlled trial of angiotensin-converting enzyme inhibition for skeletal muscle dysfunction in COPD. Chest. 2014;146:932–940. doi:10.1378/chest.13-2483. PMID:24556825.
  • Morrell N, Higham M, Phillips P, Shakur B, Robinson P, Beddoes R. Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonary disease. Respir Res. 2005;6:88. doi:10.1186/1465-9921-6-88. PMID:16060962.
  • Zielinski J, Hawrylkiewicz I, Gorecka D, Gluskowski J, Koscinska M. Captopril effects on pulmonary and systemic hemodynamics in chronic cor pulmonale. Chest. 1986;90:562–565. doi:10.1378/chest.90.4.562. PMID:3530649.
  • Andreas S, Herrmann-Lingen C, Raupach T, Luthje L, Fabricius JA, Hruska N, Körber W, Büchner B, Criée CP, Hasenfuss G, et al. Angiotensin II blockers in obstructive pulmonary disease:a randomised controlled trial. Eur Respir J. 2006;27:972–979. doi:10.1183/09031936.06.00098105. PMID:16446313.
  • Ptinopoulou AG, Pikilidou MI, Lasaridis AN. The effect of antihypertensive drugs on chronic kidney disease: a comprehensive review. Hypertens Res. 2013;36:91–101. doi:10.1038/hr.2012.157. PMID:23051659.
  • Salpeter S, Ormiston T, Salpeter E. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2005;4:CD003566.
  • Ni Y, Shi G, Wan H. Use of cardioselective β-blockers in patients with chronic obstructive pulmonary disease: a meta-analysis of randomized, placebo-controlled, blinded trials. J Int Med Res. 2012;40:2051–2065. doi:10.1177/030006051204000602. PMID:23321161.
  • Du Q, Sun Y, Ding N, Lu L, Chen Y. Beta-blockers reduced the risk of mortality and exacerbation in patients with COPD: a meta-analysis of observational studies. PLoS One. 2014;9:e113048. doi:10.1371/journal.pone.0113048. PMID:25427000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.