1,103
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Granzyme B May Act as an Effector Molecule to Control the Inflammatory Process in COPD

ORCID Icon & ORCID Icon
Pages 1-11 | Received 22 Oct 2023, Accepted 20 Dec 2023, Published online: 05 Feb 2024

References

  • Agustí A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):gg1248–1256. doi: 10.1056/NEJMra1900475.
  • Cosio MG, Hale KA, Niewoehner DE. Morphologic and morphometric effects of prolonged cigarette smoking on the small airways. Am Rev Respir Dis. 1980;122(2):265–221. doi: 10.1164/arrd.1980.122.2.265.
  • Fletcher C, Peto R, Tinker C, et al. The natural history of chronic bronchitis and emphysema. Oxford: oxford University Press; 1976. pp. 70–105.
  • Hale KA, Ewing SL, Gosnell BA, et al. Lung disease in long-term cigarette smokers with and without chronic air-flow obstruction. Am Rev Respir Dis. 1984;130(5):716–721. doi: 10.1164/arrd.1984.130.5.716.
  • Wright JL. Small airways disease: its role in chronic airflow obstruction. Semin Respir Crit Care Med. 1992;13(02):72–84. doi: 10.1055/s-2007-1006260.
  • Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365(13):1184–1192. doi: 10.1056/NEJMoa1105482.
  • Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2014;6(11):1532–1547. doi: 10.3978/j.issn.2072-1439.2014.11.33.
  • Koo HK, Vasilescu DM, Booth S, et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6(8):591–602. doi: 10.1016/S2213-2600(18)30196-6.
  • Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7(1):53. doi: 10.1186/1465-9921-7-53.
  • Trapani JA. Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2001;2(12):REVIEWS3014. doi: 10.1186/gb-2001-2-12-reviews3014.
  • Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol. 2003;3(5):361–370. doi: 10.1038/nri1083.
  • Rousalova I, Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol. 2010;37(6):1361–1378. doi: 10.3892/ijo_00000788.
  • Saetta M, Di Stefano A, Turato G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(3 Pt 1):822–826. doi: 10.1164/ajrccm.157.3.9709027.
  • Eapen MS, McAlinden K, Tan D, et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology. 2017;22(6):1125–1132. doi: 10.1111/resp.13021.
  • Olloquequi J, Ferrer J, Montes JF, et al. Differential lymphocyte infiltration in small airways and lung parenchyma in COPD patients. Respir Med. 2010;104(9):1310–1318. doi: 10.1016/j.rmed.2010.03.002.
  • Williams M, Todd I, Fairclough LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res. 2021;70(1):11–18. doi: 10.1007/s00011-020-01408-z.
  • Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–2454. doi: 10.1056/NEJMra0804752.
  • Lei H, Schmidt-Bleek K, Dienelt A, et al. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol. 2015;6:184. doi: 10.3389/fphar.2015.00184.
  • Grover P, Goel PN, Greene MI. Regulatory T cells: regulation of identity and function. Front Immunol. 2021;12:750542. doi: 10.3389/fimmu.2021.750542.
  • Brull EA, Panetti C, Joller N. Moving to the outskirts: interplay between regulatory T cells and peripheral tissues. Front Immunol. 2022;13:864628. doi: 10.3389/fimmu.2022.864628.
  • Lehtimäki S, Lahesmaa R. Regulatory T cells control immune responses through their non-redundant tissue specific features. Front Immunol. 2013;4:294. doi: 10.3389/fimmu.2013.00294.
  • Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol. 2022;13:954798. doi: 10.3389/fimmu.2022.954798.
  • Clambey ET, Torres RM. Activation or suppression? T cell immunity in COPD lungs. J Chronic Obstruct Pulmon Dis. 2009;6(2):84–85. doi: 10.1080/15412550902835168.
  • Traxinger BR, Richert-Spuhler LEL, Lund JM. Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunol. 2022;15(3):398–407. doi: 10.1038/s41385-021-00471-x.
  • Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006;108(2):426–431. doi: 10.1182/blood-2006-01-0177.
  • Gratz IK, Campbell DJ. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol. 2014;5:333. doi: 10.3389/fimmu.2014.00333.
  • Burzyn D, Benoist C, Mathis D. Regulatory T cells in non-lymphoid tissues. Nat Immunol. 2013;14(10):1007–1013. doi: 10.1038/ni.2683.
  • Plumb J, Smyth LJ, Adams HR, et al. Increased T-regulatory cells within lymphocyte follicles in moderate COPD. Eur Respir J. 2009;34(1):89–94. doi: 10.1183/09031936.00100708.
  • Kalathil SG, Lugade AA, Pradhan V, et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(1):40–50. doi: 10.1164/rccm.201312-2293OC.
  • Vargas-Rojas MI, Ramírez-Venegas A, Limón-Camacho L, et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med. 2011;105(11):1648–1654. doi: 10.1016/j.rmed.2011.05.017.
  • Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. doi: 10.1186/s40413-016-0095-2.
  • Eltrawy HH, Elshennawy S, Abozaid SY, et al. Role of regulatory T-cells in chronic obstructive pulmonary disease. Sci J Al-Azhar Med Fac Girls. 2019;3(3):596–604. doi: 10.4103/sjamf.sjamf_58_19.
  • Wang H, Ying H, Wang S, et al. Imbalance of peripheral blood Th17 and treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2015;9(3):330–341. doi: 10.1111/crj.12147.
  • Jin Y, Wan Y, Chen G, et al. Treg/IL-17 ratio and treg differentiation in patients with COPD. PLoS One. 2014;9(10):e111044. doi: 10.1371/journal.pone.011104.
  • Tan DBA, Teo TH, Setiawan AM, et al. Increased CTLA-4+ T cells may contribute to impaired T helper type 1 immune responses in patients with chronic obstructive pulmonary disease. Immunology. 2017;151(2):219–226. doi: 10.1111/imm.12725.
  • Li XN, Pan X, Qiu D. Imbalances of Th17 and treg cells and their respective cytokines in COPD patients by disease stage. Int J Clin Exp Med. 2014;7(12):5324–5329. PMID: 25664038; PMCID: PMC4307485.
  • Roos-Engstrand E, Pourazar J, Behndig AF, et al. Expansion of CD4 + CD25+ helper T cells without regulatory function in smoking and COPD. Respir Res. 2011;12(1):74. doi: 10.1186/1465-9921-12-74.
  • Tan DB, Fernandez S, Price P, et al. Impaired function of regulatory T-cells in patients with chronic obstructive pulmonary disease (COPD). Immunobiology. 2014;219(12):975–979. doi: 10.1016/j.imbio.2014.07.005.
  • Chatila WM, Criner GJ, Hancock WW, et al. Blunted expression of miR-199a-5p in regulatory T cells of patients with chronic obstructive pulmonary disease compared to unaffected smokers. Clin Exp Immunol. 2014;177(1):341–352. doi: 10.1111/cei.12325.
  • Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567–569. doi: 10.1038/nm1583.
  • Smyth LJC, Starkey C, Vestbo J, et al. CD4-regulatory cells in COPD patients. Chest. 2007;132(1):156–163. doi: 10.1378/chest.07-0083.
  • Barceló B, Pons J, Ferrer JM, et al. Phenotypic characterization of T-lymphocytes in COPD: abnormal CD4 + CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J. 2008;31(3):555–562. doi: 10.1183/09031936.00010407.
  • Isajevs S, Taivans I, Strazda G, et al. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J. 2009;33(1):61–67. doi: 10.1183/09031936.00145307.
  • Chu S, Zhong X, Zhang J, et al. The expression of Foxp3 and ROR gamma t in lung tissues from normal smokers and chronic obstructive pulmonary disease patients. Int Immunopharmacol. 2011;11(11):1780–1788. doi: 10.1016/j.intimp.2011.06.010.
  • Hou J, Sun Y, Hao Y, et al. Imbalance between subpopulations of regulatory T cells in COPD. Thorax. 2013;68(12):1131–1139. doi: 10.1136/thoraxjnl-2012-201956.
  • Sales DS, Ito JT, Zanchetta IA, et al. Regulatory T-cell distribution within lung compartments in COPD. COPD. 2017;14(5):533–542. doi: 10.1080/15412555.2017.1346069.
  • Zheng X, Zhang L, Chen J, et al. Dendritic cells and Th17/treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease. Biomed Pharmacother. 2018;108:1141–1151. doi: 10.1016/j.biopha.2018.09.113.
  • Sileikiene V, Laurinaviciene A, Lesciute-Krilaviciene D, et al. Levels of CD4+ CD25+ T regulatory cells in bronchial mucosa and peripheral blood of chronic obstructive pulmonary disease indicate involvement of autoimmunity mechanisms. Adv Respir Med. 2019;87(3):159–166. doi: 10.5603/ARM.2019.0023.
  • LourençO JD, Teodoro WR, Barbeiro DF, et al. Th17/treg-related intracellular signaling in patients with chronic obstructive pulmonary disease: comparison between local and systemic responses. Cells. 2021;10(7):1569. doi: 10.3390/cells10071569.
  • Hou J, Wang X, Su C, et al. Reduced frequency of Foxp3+GARP+ regulatory T cells in COPD patients are associated with multi-organ loss of tissue phenotype. Respir Res. 2022;23(1):176. doi: 10.1186/s12931-022-02099-2.
  • Ström JE, Pourazar J, Linder R, et al. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function. Respir Res. 2020;21(1):330–338. doi: 10.1186/s12931-020-01593-9.
  • Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911. doi: 10.1016/j.immuni.2009.03.019.
  • Wang J, Ioan-Facsinay A, van der Voort EIH, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007;37(1):129–138. doi: 10.1002/eji.200636435.
  • Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity. 2019;50(2):302–316. doi: 10.1016/j.immuni.2019.01.020.
  • Wegrzyn AS, Kedzierska AE, Obojski A. Identification and classification of distinct surface markers of T regulatory cells. Front Immunol. 2023;13:1055805. doi: 10.3389/fimmu.2022.1055805.
  • Vignali D, Collison L, Workman C. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–532. doi: 10.1038/nri2343.
  • Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783–1786. doi: 10.4049/jimmunol.174.4.1783.
  • Wang W, Zou R, Qiu Y, et al. Interaction networks converging on immunosuppressive roles of granzyme B: special niches within the tumor microenvironment. Front Immunol. 2021;12:670324. doi: 10.3389/fimmu.2021.670324.
  • Salti SM, Hammelev EM, Grewal JL, et al. Granzyme B regulates antiviral CD8+ T cell responses. J Immunol. 2011;187(12):6301–6309. doi: 10.4049/jimmunol.1100891.
  • Loebbermann J, Thornton H, Durant L, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5(2):161–172. doi: 10.1038/mi.2011.62.
  • Bem RA, Bos AP, Bots M, et al. Activation of the granzyme pathway in children with severe respiratory syncytial virus infection. Pediatr Res. 2008;63(6):650–655. doi: 10.1203/PDR.0b013e31816fdc32.
  • Lopes FDTQS, Tibério IdFLC, Leme A, et al. The importance of Th17/treg imbalance in asthma and COPD development and progression. Front Immunol. 2022;13:1025215. doi: 10.3389/fimmu.2022.1025215.
  • Kim WD, Chi HS, Choe KH, et al. A possible role for CD8+ and non-CD8+ cell granzyme B in early small airway wall remodelling in centrilobular emphysema. Respirology. 2013;18(4):688–696. doi: 10.1111/resp.12069.
  • Nowacki TM, Kuerten S, Zhang W, et al. Granzyme B production distinguishes recently activated CD8(+) memory cells from resting memory cells. Cell Immunol. 2007;247(1):36–48. doi: 10.1016/j.cellimm.2007.07.004.
  • Wherry E, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–499. doi: 10.1038/nri3862.
  • Iga N, Otsuka A, Yamamoto Y, et al. Accumulation of exhausted CD8+ T cells in extramammary paget’s disease. PLoS One. 2019;14(1):e0211135. doi: 10.1371/journal.pone.0211135.
  • Zhang J, He T, Xue L, et al. Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409. doi: 10.1016/j.ebiom.2021.103409.
  • Henson SM, Macaulay R, Riddell NE, et al. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol. 2015;45(5):1441–1451. doi: 10.1002/eji.201445312.
  • Kim WD, Chi HS, Choe KH, et al. The role of granzyme B containing cells in the progression of chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul). 2020;83(Supple 1):S25–S33. doi: 10.4046/trd.2020.0089.
  • Rao Y, Le Y, Xiong J, et al. NK cells in the pathogenesis of chronic obstructive pulmonary disease. Front Immunol. 2021;12:666045. doi: 10.3389/fimmu.2021.666045.
  • Finicelli M, Digilio FA, Galderisi U, et al. The emerging role of macrophages in chronic obstructive pulmonary disease: the potential impact of oxidative stress and extracellular vesicle on macrophage polarization and function. Antioxidants (Basel). 2022;11(3):464. doi: 10.3390/antiox11030464.
  • Ballarin A, Bazzan E, Zenteno RH, et al. Mast cell infiltration discriminates between histopathological phenotypes of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(3):233–239. doi: 10.1164/rccm.201112-2142OC.
  • Jogdand P, Mori M, Bergqvist A, et al. Mapping of eosinophil and basophils in COPD lung tissues. Eur Respir J. 2015;46(suppl 59):PA384. doi: 10.1183/13993003.congress-2015.PA384.
  • Bosken CH, Hards J, Gatter K, et al. Characterization of the inflammatory reaction in the peripheral airways of cigarette smokers using immunocytochemistry. Am Rev Respir Dis. 1992;145(4 Pt 1):911–917. doi: 10.1164/ajrccm/145.4_Pt_1.911.
  • Liao SX, Ding T, Rao XM, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11(1):219–225. doi: 10.3892/mmr.2014.2759.
  • Tsoumakidou M, Koutsopoulos AV, Tzanakis N, et al. Decreased small airway and alveolar CD83+ dendritic cells in COPD. Chest. 2009;136(3):726–733. doi: 10.1378/chest.08-2824.
  • Kim WD. Phenotype of chronic obstructive pulmonary disease based on computed tomography-defined underlying pathology. Tuberc Respir Dis (Seoul). 2022;85(4):302–312. doi: 10.4046/trd.2022.0029.
  • Wigren M, Björkbacka H, Andersson L, et al. Low levels of circulating CD4 + FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol. 2012;32(8):2000–2004. doi: 10.1161/ATVBAHA.112.251579.
  • Rona Kartika R, Wibowo H. Impaired function of regulatory T cells in type 2 diabetes mellitus. Mol Cell Biomed Sci. 2020;4(1):1–9. doi: 10.21705/mcbs.v4i1.64.
  • Wang C, Wang H, Dai L, et al. T-Helper 17 cell/regulatory T-cell imbalance in COPD combined with T2DM patients. Int J Chron Obstruct Pulmon Dis. 2021;16:1425–1435. doi: 10.2147/COPD.S306406.
  • de Torres JP, Marín JM, Casanova C, et al. Lung cancer in patients with chronic obstructive pulmonary disease– incidence and predicting factors. Am J Respir Crit Care Med. 2011;184(8):913–919. doi: 10.1164/rccm.201103-0430OC.
  • Bittner S, Hehlgans T, Feuerer M. Engineered treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol. 2023;44(6):468–483. doi: 10.1016/j.it.2023.04.005.