1,479
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Beyond Spirometry: Linking Wasted Ventilation to Exertional Dyspnea in the Initial Stages of COPD

, , , , , , , , , , , , & show all
Article: 2301549 | Received 15 Oct 2023, Accepted 29 Dec 2023, Published online: 13 Feb 2024

References

  • O’Donnell DE, Milne KM, James MD, et al. Dyspnea in COPD: new mechanistic insights and management implications. Adv Ther. 2020;37(1):1–11. doi:10.1007/s12325-019-01128-9.
  • Tan WC, Sin DD, Bourbeau J, et al. Characteristics of COPD in never-smokers and ever-smokers in the general population: results from the CanCOLD study. Thorax. 2015;70(9):822–829. doi:10.1136/thoraxjnl-2015-206938.
  • Tan WC, Hague CJ, Leipsic J, et al. Findings on thoracic computed tomography scans and respiratory outcomes in persons with and without chronic obstructive pulmonary disease: a Population-Based cohort study. PLoS ONE. 2016;11(11):e0166745. doi:10.1371/journal.pone.0166745.
  • Cherian M, Jensen D, Tan WC, et al. Dyspnoea and symptom burden in mild-moderate COPD: the Canadian cohort obstructive lung disease study. ERJ Open Res. 2021;7(2):00960–2020. doi:10.1183/23120541.00960-2020.
  • GOLD Executive Committee. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: 2019. [Internet]. Available from: www.goldcopd.org.
  • O’Donnell DE, Gebke KB. Examining the role of activity, exercise, and pharmacology in mild COPD. Postgrad Med. 2014;126(5):135–145. doi:10.3810/pgm.2014.09.2808.
  • O’Donnell DE, Gebke KB. Activity restriction in mild COPD: a challenging clinical problem. Int J Chron Obstruct Pulmon Dis. 2014;9:577–588. doi:10.2147/COPD.S62766.
  • James MD, Milne KM, Phillips DB, et al. Dyspnea and exercise limitation in mild COPD: the value of CPET. Front Med (Lausanne). 2020;7:442. doi:10.3389/fmed.2020.00442.
  • Neder JA, de Torres JP, O’Donnell DE. Recent advances in the physiological assessment of dyspneic patients with mild COPD. COPD. 2021;18(3):374–384. doi:10.1080/15412555.2021.1913110.
  • Ofir D, Laveneziana P, Webb KA, et al. Mechanisms of dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(6):622–629. doi:10.1164/rccm.200707-1064OC.
  • Deesomchok A, Webb KA, Forkert L, et al. Lung hyperinflation and its reversibility in patients with airway obstruction of varying severity. COPD. 2010;7(6):428–437. doi:10.3109/15412555.2010.528087.
  • Guenette JA, Raghavan N, Harris-McAllister V, et al. Effect of adjunct fluticasone propionate on airway physiology during rest and exercise in COPD. Respir Med. 2011;105(12):1836–1845. doi:10.1016/j.rmed.2011.08.021.
  • Guenette JA, Webb KA, O’Donnell DE. Effect of fluticasone/salmeterol combination on dyspnea and respiratory mechanics in mild-to-moderate COPD. Respir Med. 2013;107(5):708–716. doi:10.1016/j.rmed.2013.01.009.
  • Chin RC, Guenette JA, Cheng S, et al. Does the respiratory system limit exercise in mild chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 2013;187(12):1315–1323. doi:10.1164/rccm.201211-1970OC.
  • Guenette JA, Chin RC, Cheng S, et al. Mechanisms of exercise intolerance in global initiative for chronic obstructive lung disease grade 1 COPD. Eur Respir J. 2014;44(5):1177–1187. doi:10.1183/09031936.00034714.
  • Neder JA, Arbex FF, Alencar MCN, et al. Exercise ventilatory inefficiency in mild to end-stage COPD. Eur Respir J. 2015;45(2):377–387. doi:10.1183/09031936.00135514.
  • Neder JA, O’Donnell CDJ, Cory J, et al. Ventilation distribution heterogeneity at rest as a marker of exercise impairment in mild-to-Advanced COPD. COPD. 2015;12(3):249–256. doi:10.3109/15412555.2014.948997.
  • Elbehairy AF, Ciavaglia CE, Webb KA, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med. 2015;191(12):1384–1394. doi:10.1164/rccm.201501-0157OC.
  • Elbehairy AF, Raghavan N, Cheng S, et al. Physiologic characterization of the chronic bronchitis phenotype in GOLD grade IB COPD. Chest. 2015;147(5):1235–1245. doi:10.1378/chest.14-1491.
  • Elbehairy AF, Guenette JA, Faisal A, et al. Mechanisms of exertional dyspnoea in symptomatic smokers without COPD. Eur Respir J. 2016;48(3):694–705. doi:10.1183/13993003.00077-2016.
  • Faisal A, Alghamdi BJ, Ciavaglia CE, et al. Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am J Respir Crit Care Med. 2016;193(3):299–309. doi:10.1164/rccm.201504-0841OC.
  • Elbehairy AF, Faisal A, Guenette JA, et al. Resting physiological correlates of reduced exercise capacity in smokers with mild airway obstruction. COPD. 2017;14(3):267–275. doi:10.1080/15412555.2017.1281901.
  • Elbehairy AF, Parraga G, Webb KA, et al. Mild chronic obstructive pulmonary disease: why spirometry is not sufficient!. Expert Rev Respir Med. 2017;11(7):549–563. doi:10.1080/17476348.2017.1334553.
  • Zelt JT, Jones JH, Hirai DM, et al. Systemic vascular dysfunction is associated with emphysema burden in mild COPD. Respir Med. 2018;136:29–36. doi:10.1016/j.rmed.2018.01.007.
  • Phillips DB, James MD, Elbehairy AF, et al. Reduced exercise tolerance in mild chronic obstructive pulmonary disease: the contribution of combined abnormalities of diffusing capacity for carbon monoxide and ventilatory efficiency. Respirology. 2021;26(8):786–795. doi:10.1111/resp.14045.
  • Phillips DB, Domnik NJ, Elbehairy AF, et al. Elevated exercise ventilation in mild COPD is not linked to enhanced central chemosensitivity. Respir Physiol Neurobiol. 2021;284:103571. doi:10.1016/j.resp.2020.103571.
  • Phillips DB, Neder JA, Elbehairy AF, et al. Qualitative components of dyspnea during incremental exercise across the COPD continuum. Med Sci Sports Exerc. 2021;53(12):2467–2476. doi:10.1249/MSS.0000000000002741.
  • Neder JA, Berton DC, Phillips DB, et al. Exertional ventilation/carbon dioxide output relationship in COPD: from physiological mechanisms to clinical applications. Eur Respir Rev. 2021;30(161):200190. doi:10.1183/16000617.0190-2020.
  • Elbehairy AF, O’Donnell CD, Abd Elhameed A, et al. Low resting diffusion capacity, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. J Appl Physiol (1985). 2019;127(4):1107–1116., doi:10.1152/japplphysiol.00341.2019.
  • Glenny RW, Robertson HT. Spatial distribution of ventilation and perfusion: mechanisms and regulation. Compr Physiol. 2011;1(1):375–395. doi:10.1002/cphy.c100002.
  • West JB. State of the art: ventilation-perfusion relationships. Am Rev Respir Dis. 1977;116(5):919–943. doi:10.1164/arrd.1977.116.5.919.
  • West JB. Regional differences in gas exchange in the lung of erect man. J Appl Physiol. 1962;17(6):893–898. doi:10.1152/jappl.1962.17.6.893.
  • Cardús J, Burgos F, Diaz O, et al. Increase in pulmonary ventilation-perfusion inequality with age in healthy individuals. Am J Respir Crit Care Med. 1997;156(2 Pt 1):648–653. doi:10.1164/ajrccm.156.2.9606016.
  • Neder JA, Berton DC, Arbex FF, et al. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur Respir J. 2017;49(3):1602036. doi:10.1183/13993003.02036-2016.
  • West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1071–1072. doi:10.1152/classicessays.00024.2004.
  • Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol (1985). 1999;87(6):1997–2006. doi:10.1152/jappl.1999.87.6.1997.
  • Wagner PD. Ventilation-perfusion matching during exercise. Chest. 1992;101(5 Suppl):192S–198S. doi:10.1378/chest.101.5_supplement.192s.
  • Whipp BJ, Ward SA. Cardiopulmonary coupling during exercise. J Exp Biol. 1982;100(1):175–193. doi:10.1242/jeb.100.1.175.
  • Whipp BJ. Control of the exercise hyperpnea: the unanswered question. Adv Exp Med Biol. 2008;605:16–21. doi:10.1007/978-0-387-73693-8_3.
  • Riley RL, Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol. 1949;1(12):825–847. doi:10.1152/jappl.1949.1.12.825.
  • Agustí A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248–1256. doi:10.1056/NEJMra1900475.
  • Rodríguez-Roisin R, Drakulovic M, Rodríguez DA, et al. Ventilation-perfusion imbalance and chronic obstructive pulmonary disease staging severity. J Appl Physiol (1985). 2009;106(6):1902–1908. doi:10.1152/japplphysiol.00085.2009.
  • Neder JA. Residual exertional dyspnea in cardiopulmonary disease. Ann Am Thorac Soc. 2020;17(12):1516–1525. doi:10.1513/AnnalsATS.202004-398FR.
  • Pain CF, Glazier JB, Simon H, et al. Regional and overall inequality of ventilation and blood flow in patients with chronic airflow obstruction. Thorax. 1967;22(5):453–461. doi:10.1136/thx.22.5.453.
  • West JB, Crouch DR, Fine JM, et al. A new, noninvasive method of measuring impaired pulmonary gas exchange in lung disease: an outpatient study. Chest. 2018;154(2):363–369. doi:10.1016/j.chest.2018.02.001.
  • Filley GF, Gregoire F, Wright GW. Alveolar and arterial oxygen tensions and the significance of the alveolar-arterial oxygen tension difference in normal men. J Clin Invest. 1954;33(4):517–529. doi:10.1172/JCI102922.
  • Kreit JW. Volume capnography in the intensive care unit: physiological principles, measurements, and calculations. Ann Am Thorac Soc. 2019;16(3):291–300. doi:10.1513/AnnalsATS.201807-501CME.
  • Krogh M. The diffusion of gases through the lungs of man. J Physiol. 1915;49(4):271–300. doi:10.1113/jphysiol.1915.sp001710.
  • Roughton FJ, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11(2):290–302. doi:10.1152/jappl.1957.11.2.290.
  • Hughes JM, Pride NB. In defence of the carbon monoxide transfer coefficient kco (TL/VA). Eur Respir J. 2001;17(2):168–174. doi:10.1183/09031936.01.17201680.
  • Stam H, Versprille A, Bogaard JM. The components of the carbon monoxide diffusing capacity in man dependent on alveolar volume. Bull Eur Physiopathol Respir. 1983;19(1):17–22.
  • Guenard H, Varene N, Vaida P. Determination of lung capillary blood volume and membrane diffusing capacity in man by the measurements of NO and CO transfer. Respir Physiol. 1987;70(1):113–120. doi:10.1016/s0034-5687(87)80036-1.
  • Jones NL, Robertson DG, Kane JW. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(5):954–960. doi:10.1152/jappl.1979.47.5.954.
  • Bohr C. [Ueber die Lungenathmung]. Skand Arch Physiol. 1891;2(1):236–268. doi:10.1111/j.1748-1716.1891.tb00581.x.
  • Enghoff H[, I, Volumen. Bermekungen zur Frage des shadlichen Raumes. Upsala Laekarefoeren]. Foerh. 1938;14:191–218.
  • Ming DKY, Patel MS, Hopkinson NS, et al. The ‘anatomic shunt test’ in clinical practice; contemporary description of test and in-service evaluation. Thorax. 2014;69(8):773–775. doi:10.1136/thoraxjnl-2013-204103.
  • Neder JA, Kirby M, Santyr G, et al. V̇/Q̇ mismatch: a novel target for COPD treatment. Chest. 2022;162(5):1030–1047. doi:10.1016/j.chest.2022.03.033.
  • Wagner PD, Dantzker DR, Dueck R, et al. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest. 1977;59(2):203–216. doi:10.1172/JCI108630.
  • Rocha A, Arbex FF, Sperandio PA, et al. Excess ventilation in chronic obstructive pulmonary disease-Heart failure overlap. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med. 2017;196(10):1264–1274. doi:10.1164/rccm.201704-0675OC.
  • Costa CM, Neder JA, Verrastro CG, et al. Uncovering the mechanisms of exertional dyspnoea in combined pulmonary fibrosis and emphysema. Eur Respir J. 2020;55(1):1901319. doi:10.1183/13993003.01319-2019.
  • Neder JA, Rocha A, Arbex FF, et al. Exertional oscillatory ventilation in subjects without heart failure reporting chronic dyspnoea. ERJ Open Res. 2023;9(1):00324–2022. doi:10.1183/23120541.00324-2022.
  • Dempsey JA, Smith CA. Pathophysiology of human ventilatory control. Eur Respir J. 2014;44(2):495–512. doi:10.1183/09031936.00048514.
  • O’Donnell DE, Elbehairy AF, Berton DC, et al. Advances in the evaluation of respiratory pathophysiology during exercise in chronic lung diseases. Front Physiol. 2017;8:82. doi:10.3389/fphys.2017.00082.
  • Wasserman K, Whipp BJ, Koyl SN, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236–243. doi:10.1152/jappl.1973.35.2.236.
  • Neder JA, Berton DC, Marillier M, et al. Resting V’E/V’CO2 adds to inspiratory capacity to predict the burden of exertional dyspnoea in COPD. Eur Respir J. 2020;56(1):1902434. doi:10.1183/13993003.02434-2019.
  • Jones JH, Zelt JT, Hirai DM, et al. Emphysema on thoracic CT and exercise ventilatory inefficiency in mild-to-moderate COPD. COPD. 2017;14(2):210–218. doi:10.1080/15412555.2016.1253670.
  • James MD, Phillips DB, Elbehairy AF, et al. Mechanisms of exertional dyspnea in patients with mild COPD and a low resting DLCO. COPD. 2021;18(5):501–510. doi:10.1080/15412555.2021.1932782.
  • Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–1716. doi:10.1183/09031936.00137614.
  • Neder JA, Berton DC, Nery LE, et al. A frame of reference for assessing the intensity of exertional dyspnoea during incremental cycle ergometry. Eur Respir J. 2020;56(4):2000191. doi:10.1183/13993003.00191-2020.
  • Dempsey JA, Vidruk EH, Mastenbrook SM. Pulmonary control systems in exercise. Fed Proc. 1980;39(5):1498–1505.
  • Mahler DA, O’Donnell DE. Recent advances in dyspnea. Chest. 2015;147(1):232–241. doi:10.1378/chest.14-0800.
  • Laviolette L, Laveneziana P. Dyspnoea: a multidimensional and multidisciplinary approach. Eur Respir J. 2014;43(6):1750–1762. doi:10.1183/09031936.00092613.
  • Berton DC, Plachi F, James MD, et al. Dynamic ventilatory reserve during incremental exercise: reference values and clinical validation in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2023;20(10):1425–1434. doi:10.1513/AnnalsATS.202304-303OC.
  • O’Donnell DE, Milne KM, Vincent SG, et al. Unraveling the causes of unexplained dyspnea: the value of exercise testing. Clin Chest Med. 2019;40(2):471–499. doi:10.1016/j.ccm.2019.02.014.
  • Neder JA. Cardiopulmonary exercise testing applied to respiratory medicine: myths and facts. Respir Med. 2023;214:107249. doi:10.1016/j.rmed.2023.107249.
  • Macklem PT. The pathophysiology of chronic bronchitis and emphysema. Med Clin North Am. 1973;57(3):669–670. doi:10.1016/s0025-7125(16)32266-0.
  • Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J. 2014;44(4):1023–1041. doi:10.1183/09031936.00037014.
  • Crisafulli E, Alfieri V, Silva M, et al. Relationships between emphysema and airways metrics at High-Resolution Computed Tomography (HRCT) and ventilatory response to exercise in mild to moderate COPD patients. Respir Med. 2016;117:207–214. doi:10.1016/j.rmed.2016.06.016.
  • Rinaldo RF, Mondoni M, Comandini S, et al. The role of phenotype on ventilation and exercise capacity in patients affected by COPD: a retrospective study. Multidiscip Respir Med. 2020;15(1):476. doi:10.4081/mrm.2020.476.
  • Tanabe N, Rhee CK, Sato S, et al. Disproportionally impaired diffusion capacity relative to airflow limitation in COPD. COPD. 2020;17(6):627–634. doi:10.1080/15412555.2020.1845639.
  • Kirby M, Owrangi A, Svenningsen S, et al. On the role of abnormal DL(CO) in ex-smokers without airflow limitation: symptoms, exercise capacity and hyperpolarised helium-3 MRI. Thorax. 2013;68(8):752–759. doi:10.1136/thoraxjnl-2012-203108.
  • Xie C, Rong Z, Li Z, et al. Measurements of membrane diffusing capacity and pulmonary capillary blood volume in normal subjects and patients with mild emphysema. Chin Med J (Engl). 1996;109:840–847.
  • Barbera JA, Ramirez J, Roca J, et al. Lung structure and gas exchange in mild chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141(4 Pt 1):895–901. doi:10.1164/ajrccm/141.4_Pt_1.895.
  • Hirai DM, Jones JH, Zelt JT, et al. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. J Appl Physiol (1985). 2017;122(5):1351–1361. doi:10.1152/japplphysiol.00990.2016.
  • Kirby M, Pike D, Sin DD, et al. COPD: do imaging measurements of emphysema and airway disease explain symptoms and exercise capacity? Radiology. 2015;277(3):872–880. doi:10.1148/radiol.2015150037.
  • Ostridge K, Gove K, Paas KHW, et al. Using novel computed tomography analysis to describe the contribution and distribution of emphysema and small airways disease in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2019;16(8):990–997. doi:10.1513/AnnalsATS.201810-669OC.
  • Barberà JA, Riverola A, Roca J, et al. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149(2 Pt 1):423–429. doi:10.1164/ajrccm.149.2.8306040.
  • Cosio M, Ghezzo H, Hogg JC, et al. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978;298(23):1277–1281. doi:10.1056/NEJM197806082982303.
  • Santos S, Peinado VI, Ramirez J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(9):1250–1256. doi:10.1164/rccm.200210-1233OC.
  • Borek I, Birnhuber A, Voelkel NF, et al. The vascular perspective on acute and chronic lung disease. J Clin Invest. 2023;133(16):e170502. doi:10.1172/JCI170502.
  • Aaron CP, Hoffman EA, Lima JAC, et al. Pulmonary vascular volume, impaired left ventricular filling and dyspnea: the MESA lung study. PLoS ONE. 2017;12(4):e0176180. doi:10.1371/journal.pone.0176180.
  • Hueper K, Vogel-Claussen J, Parikh MA, et al. Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. The MESA COPD study. Am J Respir Crit Care Med. 2015;192(5):570–580. doi:10.1164/rccm.201411-2120OC.
  • Ross BA, Brotto AR, Fuhr DP, et al. The supine position improves but does not normalize the blunted pulmonary capillary blood volume response to exercise in mild COPD. J Appl Physiol (1985). 2020;128(4):925–933. doi:10.1152/japplphysiol.00890.2019.
  • Phillips DB, Brotto AR, Ross BA, et al. Inhaled nitric oxide improves ventilatory efficiency and exercise capacity in patients with mild COPD: a randomized-control cross-over trial. J Physiol. 2021;599(5):1665–1683. doi:10.1113/JP280913.
  • Tedjasaputra V, van Diepen S, Phillips DB, et al. Pulmonary capillary blood volume response to exercise is diminished in mild chronic obstructive pulmonary disease. Respir Med. 2018;145:57–65. doi:10.1016/j.rmed.2018.10.015.
  • Díaz AA, Pinto-Plata V, Hernández C, et al. Emphysema and DLCO predict a clinically important difference for 6MWD decline in COPD. Respir Med. 2015;109(7):882–889. doi:10.1016/j.rmed.2015.04.009.
  • Hughes JMB, Bates DV. Historical review: the carbon monoxide diffusing capacity (DLCO) and its membrane (DM) and red cell (Theta.Vc) components. Respir Physiol Neurobiol. 2003;138(2–3):115–142. doi:10.1016/j.resp.2003.08.004.
  • Elbehairy AF, Vincent SG, Phillips DB, et al. Pulmonary vascular volume by quantitative CT in dyspneic smokers with minor emphysema. COPD. 2023;20(1):135–143. doi:10.1080/15412555.2023.2169121.
  • Hueper K, Parikh MA, Prince MR, et al. Quantitative and semiquantitative measures of regional pulmonary microvascular perfusion by magnetic resonance imaging and their relationships to global lung perfusion and lung diffusing capacity: the multiethnic study of atherosclerosis chronic obstructive pulmonary disease study. Invest Radiol. 2013;48(4):223–230. doi:10.1097/RLI.0b013e318281057d.
  • Pompe E, Strand M, van Rikxoort EM, et al. Five-year progression of emphysema and air trapping at CT in smokers with and those without chronic obstructive pulmonary disease: results from the COPDGene study. Radiology. 2020;295(1):218–226. doi:10.1148/radiol.2020191429.
  • Biederer J. MR imaging of the airways. Br J Radiol. 2023;96(1146):20220630. doi:10.1259/bjr.20220630.
  • Elbehairy AF, Webb KA, Laveneziana P, et al. Acute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD. Respir Physiol Neurobiol. 2018;252-253:64–71. doi:10.1016/j.resp.2018.03.012.
  • Liebow AA. Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis. 1959;80(1, Part 2):67–93. doi:10.1164/arrd.1959.80.1P2.67.
  • Ohno Y, Seo JB, Parraga G, et al. Pulmonary functional imaging: part 1-State-of-the-Art technical and physiologic underpinnings. Radiology. 2021;299(3):508–523. doi:10.1148/radiol.2021203711.
  • Gefter WB, Lee KS, Schiebler ML, et al. Pulmonary functional imaging: part 2—State-of-the-Art clinical applications and opportunities for improved patient care. Radiology. 2021;299(3):524–538. doi:10.1148/radiol.2021204033.
  • Kirby M, Yin Y, Tschirren J, et al. A novel method of estimating small airway disease using inspiratory-to-expiratory computed tomography. Respiration. 2017;94(4):336–345. doi:10.1159/000478865.
  • Guo F, Capaldi D, Kirby M, et al. Development of a pulmonary imaging biomarker pipeline for phenotyping of chronic lung disease. J Med Imaging (Bellingham). 2018;5(2):026002. doi:10.1117/1.JMI.5.2.026002.
  • MacNeil JL, Capaldi DPI, Westcott AR, et al. Pulmonary imaging phenotypes of chronic obstructive pulmonary disease using multiparametric response maps. Radiology. 2020;295(1):227–236. doi:10.1148/radiol.2020191735.
  • Voskrebenzev A, Gutberlet M, Klimeš F, et al. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med. 2018;79(4):2306–2314. doi:10.1002/mrm.26893.
  • Kaireit TF, Voskrebenzev A, Gutberlet M, et al. Comparison of quantitative regional perfusion-weighted phase resolved functional lung (PREFUL) MRI with dynamic gadolinium-enhanced regional pulmonary perfusion MRI in COPD patients. J Magn Reson Imaging. 2019;49(4):1122–1132. doi:10.1002/jmri.26342.
  • Klimeš F, Voskrebenzev A, Gutberlet M, et al. Repeatability of dynamic 3D phase-resolved functional lung (PREFUL) ventilation MR imaging in patients with chronic obstructive pulmonary disease and healthy volunteers. J Magn Reson Imaging. 2021;54(2):618–629. doi:10.1002/jmri.27543.
  • Pöhler GH, Löffler F, Klimeš F, et al. Validation of phase-resolved functional lung (PREFUL) magnetic resonance imaging pulse wave transit time compared to echocardiography in chronic obstructive pulmonary disease. J Magn Reson Imaging. 2021;56(2):605–615. doi:10.1002/jmri.28016.
  • Pöhler GH, Klimeš F, Behrendt L, et al. Repeatability of phase-resolved functional lung (PREFUL)-MRI ventilation and perfusion parameters in healthy subjects and COPD patients. J Magn Reson Imaging. 2021;53(3):915–927. doi:10.1002/jmri.27385.
  • Neder JA, Berton DC, Muller PT, et al. Incorporating lung diffusing capacity for carbon monoxide in clinical decision making in chest medicine. Clin Chest Med. 2019;40(2):285–305. doi:10.1016/j.ccm.2019.02.005.
  • O’Donnell DE. Assessment of bronchodilator efficacy in symptomatic COPD: is spirometry useful? Chest. 2000;117:42S–47S.
  • Elbehairy AF, Webb KA, Neder JA, et al. Should mild COPD be treated? Evidence for early pharmacological intervention. Drugs. 2013;73(18):1991–2001. doi:10.1007/s40265-013-0145-9.