618
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression

, , , , , , , , & show all
Article: 2322605 | Received 25 Oct 2023, Accepted 19 Feb 2024, Published online: 09 Apr 2024

References

  • Chen S, Kuhn M, Prettner K, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study. Lancet Glob Health. 2023;11(8):1–13. doi: 10.1016/S2214-109X(23)00217-6.
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi: 10.1371/journal.pmed.0030442.
  • Wang C, Hao X, Chen S. Calling for improved pulmonary and critical care medicine in China and beyond. Chinese Med J Pulm Crit Care Med. 2023;1(1):1–2. doi: 10.1016/j.pccm.2023.03.005.
  • Yadav AK, Gu W, Zhang T, et al. Current perspectives on biological therapy for COPD. COPD. 2023;20(1):197–209. doi: 10.1080/15412555.2023.2187210.
  • Chen D, Curtis JL, Chen Y. Twenty years of changes in the definition of early chronic obstructive pulmonary disease. Chinese Med J Pulm Crit Care Med. 2023;1(2):84–93. doi: 10.1016/j.pccm.2023.03.004.
  • DeVries R, Kriebel D, Sama S. Outdoor air pollution and COPD-related emergency department visits, hospital admissions, and mortality: a meta-analysis. COPD. 2017;14(1):113–121. doi: 10.1080/15412555.2016.1216956.
  • Hansel NN, McCormack MC, Kim V. The effects of air pollution and temperature on COPD. COPD. 2016;13(3):372–379. doi: 10.3109/15412555.2015.1089846.
  • Tajbakhsh A, Gheibihayat SM, Mortazavi D, et al. The effect of cigarette smoke exposure on efferocytosis in chronic obstructive pulmonary disease; molecular mechanisms and treatment opportunities. COPD. 2021;18(6):723–736. doi: 10.1080/15412555.2021.1978419.
  • Terzikhan N, Verhamme KM, Hofman A, et al. Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam study. Eur J Epidemiol. 2016;31(8):785–792. doi: 10.1007/s10654-016-0132-z.
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi: 10.1016/j.jaci.2016.05.011.
  • Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101544. doi: 10.1016/j.redox.2020.101544.
  • Choudhury G, MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD. 2017;14(1):122–135. doi: 10.1080/15412555.2016.1214948.
  • Barnes PJ. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants. 2022;11(5):965. doi: 10.3390/antiox11050965.
  • Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD. 2010;7(4):291–306. doi: 10.3109/15412555.2010.496818.
  • Oberley-Deegan RE, Regan EA, Kinnula VL, et al. Extracellular superoxide dismutase and risk of COPD. COPD. 2009;6(4):307–312. doi: 10.1080/15412550903085193.
  • Moustakas M. The role of metal ions in biology, biochemistry and medicine. Materials (Basel). 2021;14(3):549. doi: 10.3390/ma14030549.
  • Jomova K, Makova M, Alomar SY, et al. Essential metals in health and disease. Chem Biol Interact. 2022;367:110173. doi: 10.1016/j.cbi.2022.110173.
  • Lu Y. Metal ions as matchmakers for proteins. Proc Natl Acad Sci U S A. 2010;107(5):1811–1812. doi: 10.1073/pnas.0914008107.
  • Salgado EN, Ambroggio XI, Brodin JD, et al. Metal templated design of protein interfaces. Proc Natl Acad Sci U S A. 2010;107(5):1827–1832. doi: 10.1073/pnas.0906852107.
  • MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr. 2000;130(5S Suppl):1500S–1508S. doi: 10.1093/jn/130.5.1500S.
  • Prasad AS. Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol. 2014;28(4):364–371. doi: 10.1016/j.jtemb.2014.07.019.
  • Hirota K. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic Biol Med. 2019;133:118–129. doi: 10.1016/j.freeradbiomed.2018.07.018.
  • Bleackley MR, Macgillivray RT. Transition metal homeostasis: from yeast to human disease. Biometals. 2011;24(5):785–809. doi: 10.1007/s10534-011-9451-4.
  • Kunutsor SK, Voutilainen A, Laukkanen JA. Serum copper-to-zinc ratio and risk of chronic obstructive pulmonary disease: a cohort study. Lung. 2023;201(1):79–84. doi: 10.1007/s00408-022-00591-6.
  • Fei Q, Weng X, Liu K, et al. The relationship between metal exposure and chronic obstructive pulmonary disease in the general US population: NHANES 2015-2016. Int J Environ Res Public Health. 2022;19(4):2085. doi: 10.3390/ijerph19042085.
  • Ghio AJ, Pavlisko EN, Roggli VL, et al. Cigarette smoke particle-induced lung injury and iron homeostasis. Int J Chron Obstruct Pulmon Dis. 2022;17:117–140. doi: 10.2147/COPD.S337354.
  • Healy C, Munoz-Wolf N, Strydom J, et al. Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res. 2021;22(1):133. doi: 10.1186/s12931-021-01722-y.
  • Szabo R, Bodolea C, Mocan T. Iron, copper, and zinc homeostasis: physiology, physiopathology, and nanomediated applications. Nanomaterials. 2021;11(11):2958. doi: 10.3390/nano11112958.
  • Cotroneo E, Ashek A, Wang L, et al. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ Res. 2015;116(10):1680–1690. doi: 10.1161/CIRCRESAHA.116.305265.
  • Lu J, Liu X, Li X, et al. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci U S A. 2024;121(4):e2311630121. doi: 10.1073/pnas.2311630121.
  • Luan R, Ding D, Xue Q, et al. Protective role of zinc in the pathogenesis of respiratory diseases. Eur J Clin Nutr. 2023;77(4):427–435. doi: 10.1038/s41430-022-01191-6.
  • Chang CJ, Brady DC. Capturing copper to inhibit inflammation. Nat Chem Biol. 2023;19(8):937–939. doi: 10.1038/s41589-023-01383-6.
  • Maywald M, Wessels I, Rink L. Zinc signals and immunity. Int J Mol Sci. 2017;18(10):2222. doi: 10.3390/ijms18102222.
  • Walter R, Gottlieb DJ, O’Connor GT. Environmental and genetic risk factors and gene-environment interactions in the pathogenesis of chronic obstructive lung disease. Environ Health Perspect. 2000;108 (Suppl 4):733–742. doi: 10.1289/ehp.00108s4733.
  • Eisner MD, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. doi: 10.1164/rccm.200811-1757ST.
  • Shen Y, Chen L, Chen J, et al. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: pathogenetic mechanism and therapeutic target. J Transl Int Med. 2023;11(4):330–340. doi: 10.2478/jtim-2022-0019.
  • Pappas RS. Toxic elements in tobacco and in cigarette smoke: inflammation and sensitization. Metallomics. 2011;3(11):1181–1198. doi: 10.1039/c1mt00066g.
  • Bernhard D, Rossmann A, Wick G. Metals in cigarette smoke. IUBMB Life. 2005;57(12):805–809. doi: 10.1080/15216540500459667.
  • Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365. doi: 10.1016/j.mrrev.2021.108365.
  • Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10(11):822. doi: 10.1038/s41419-019-2064-5.
  • Zhou S, Du X, Xie J, et al. Interleukin-6 regulates iron-related proteins through c-Jun N-terminal kinase activation in BV2 microglial cell lines. PLoS One. 2017;12(7):e0180464. doi: 10.1371/journal.pone.0180464.
  • Hansen JB, Tonnesen MF, Madsen AN, et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic beta cell fate in response to cytokines. Cell Metab. 2012;16(4):449–461. doi: 10.1016/j.cmet.2012.09.001.
  • Lin YS, Caffrey JL, Chang MH, et al. Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder. Respir Res. 2010;11(1):53. doi: 10.1186/1465-9921-11-53.
  • Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25(2):133–155. doi: 10.1038/s41580-023-00648-1.
  • Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9–17. doi: 10.1038/nchembio.1416.
  • Kawabata T. Iron-Induced oxidative stress in human diseases. Cells. 2022;11(14):2152. doi: 10.3390/cells11142152.
  • Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118535. doi: 10.1016/j.bbamcr.2019.118535.
  • Vogt AS, Arsiwala T, Mohsen M, et al. On iron metabolism and its regulation. Int J Mol Sci. 2021;22(9):4591. doi: 10.3390/ijms22094591.
  • Recalcati S, Cairo G. Macrophages and iron: a special relationship. Biomedicines. 2021;9(11):1585. doi: 10.3390/biomedicines9111585.
  • Barnes PJ. Alveolar macrophages as orchestrators of COPD. COPD. 2004;1(1):59–70. doi: 10.1081/COPD-120028701.
  • DeRosa A, Leftin A. The iron curtain: macrophages at the interface of systemic and microenvironmental iron metabolism and immune response in cancer. Front Immunol. 2021;12:614294. doi: 10.3389/fimmu.2021.614294.
  • Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44(3):492–504. doi: 10.1016/j.immuni.2016.02.016.
  • Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106(Suppl 6):1559S–1566S. doi: 10.3945/ajcn.117.155804.
  • Mizumura K, Gon Y. Iron-regulated reactive oxygen species production and programmed cell death in chronic obstructive pulmonary disease. Antioxidants. 2021;10(10):1569. doi: 10.3390/antiox10101569.
  • Mumby S, Saito J, Adcock IM, et al. Decreased breath excretion of redox active iron in COPD: a protective failure? Eur Respir J. 2016;47(4):1267–1270. doi: 10.1183/13993003.01710-2015.
  • Cloonan SM, Mumby S, Adcock IM, et al. The "iron"-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(9):1103–1112. doi: 10.1164/rccm.201702-0311PP.
  • Zhang WZ, Oromendia C, Kikkers SA, et al. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. Sci Rep. 2020;10(1):10562. doi: 10.1038/s41598-020-67047-w.
  • Cloonan SM, Glass K, Laucho-Contreras ME, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22(2):163–174. doi: 10.1038/nm.4021.
  • Masilamani V, AlZahrani K, Devanesan S, et al. Smoking induced hemolysis: spectral and microscopic investigations. Sci Rep. 2016;6(1):21095. doi: 10.1038/srep21095.
  • Lloyd RV, Hanna PM, Mason RP. The origin of the hydroxyl radical oxygen in the fenton reaction. Free Radic Biol Med. 1997;22(5):885–888. doi: 10.1016/s0891-5849(96)00432-7.
  • Halliwell B, Adhikary A, Dingfelder M, et al. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev. 2021;50(15):8355–8360. doi: 10.1039/d1cs00044f.
  • Graille M, Wild P, Sauvain JJ, et al. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol Lett. 2020;328:19–27. doi: 10.1016/j.toxlet.2020.04.006.
  • Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–997. doi: 10.1172/JCI44490.
  • Ni S, Yuan Y, Kuang Y, et al. Iron metabolism and immune regulation. Front Immunol. 2022;13:816282. doi: 10.3389/fimmu.2022.816282.
  • Tacchini L, Gammella E, De Ponti C, et al. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J Biol Chem. 2008;283(30):20674–20686. doi: 10.1074/jbc.M800365200.
  • Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010;30(1):105–122. doi: 10.1146/annurev.nutr.012809.104804.
  • Renassia C, Peyssonnaux C. New insights into the links between hypoxia and iron homeostasis. Curr Opin Hematol. 2019;26(3):125–130. doi: 10.1097/MOH.0000000000000494.
  • Lee JW, Ko J, Ju C, et al. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1–13. doi: 10.1038/s12276-019-0235-1.
  • Frost JN, Wideman SK, Preston AE, et al. Plasma iron controls neutrophil production and function. Sci Adv. 2022;8(40):eabq5384. doi: 10.1126/sciadv.abq5384.
  • Haschka D, Hoffmann A, Weiss G. Iron in immune cell function and host defense. Semin Cell Dev Biol. 2021;115:27–36. doi: 10.1016/j.semcdb.2020.12.005.
  • Kim K, Zhang WZ, Kikkers SA, et al. Use of the iron chelator deferiprone to restore function in BAL fluid macrophages in smoking and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2023;68(4):458–462. doi: 10.1165/rcmb.2022-0372LE.
  • Ho T, Nichols M, Nair G, et al. Iron in airway macrophages and infective exacerbations of chronic obstructive pulmonary disease. Respir Res. 2022;23(1):8. doi: 10.1186/s12931-022-01929-7.
  • Mohan S, Ho T, Kjarsgaard M, et al. Hemosiderin in sputum macrophages may predict infective exacerbations of chronic obstructive pulmonary disease: a retrospective observational study. BMC Pulm Med. 2017;17(1):60. doi: 10.1186/s12890-017-0408-4.
  • Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378. doi: 10.1038/s41392-022-01229-y.
  • Janssen R, Wouters EF, Janssens W, et al. Copper-heparin inhalation therapy to repair emphysema: a scientific rationale. Int J Chron Obstruct Pulmon Dis. 2019;14:2587–2602. doi: 10.2147/COPD.S228411.
  • Gaun S, Ali SA, Singh P, et al. Melatonin ameliorates chronic copper-induced lung injury. Environ Sci Pollut Res Int. 2023;30(10):24949–24962. doi: 10.1007/s11356-022-19930-4.
  • Isik B, Isik RS, Ceylan A, et al. Trace elements and oxidative stress in chronic obstructive pulmonary disease. Saudi Med J. 2005;26(12):1882–1885.
  • Tanrikulu AC, Abakay A, Evliyaoglu O, et al. Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease. Biol Trace Elem Res. 2011;143(2):659–667. doi: 10.1007/s12011-010-8897-5.
  • Jiang C, Wu B, Xue M, et al. Inflammation accelerates copper-mediated cytotoxicity through induction of six-transmembrane epithelial antigens of prostate 4 expression. Immunol Cell Biol. 2021;99(4):392–402. doi: 10.1111/imcb.12427.
  • Karadag F, Cildag O, Altinisik M, et al. Trace elements as a component of oxidative stress in COPD. Respirology. 2004;9(1):33–37. doi: 10.1111/j.1440-1843.2003.00534.x.
  • Ko JW, Park JW, Shin NR, et al. Copper oxide nanoparticle induces inflammatory response and mucus production via MAPK signaling in human bronchial epithelial cells. Environ Toxicol Pharmacol. 2016;43:21–26. doi: 10.1016/j.etap.2016.02.008.
  • Persichini T, Percario Z, Mazzon E, et al. Copper activates the NF-kappaB pathway in vivo. Antioxid Redox Signal. 2006;8(9-10):1897–1904. doi: 10.1089/ars.2006.8.1897.
  • Pham AN, Xing G, Miller CJ, et al. Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal. 2013;301:54–64. doi: 10.1016/j.jcat.2013.01.025.
  • Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28(1):219–242. doi: 10.1183/09031936.06.00053805.
  • Mizuno S, Yasuo M, Bogaard HJ, et al. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation. PLoS One. 2012;7(1):e30678. doi: 10.1371/journal.pone.0030678.
  • Hamon R, Homan CC, Tran HB, et al. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD. PLoS One. 2014;9(10):e110056. doi: 10.1371/journal.pone.0110056.
  • Liu X, Ali MK, Dua K, et al. The role of zinc in the pathogenesis of lung disease. Nutrients. 2022;14(10): 2115. doi: 10.3390/nu14102115.
  • Nedić O, Šunderić M, Robajac D, et al. Major trace elements and their binding proteins in the early phase of covid-19 infection. J Biol Inorg Chem. 2022;27(2):261–269. doi: 10.1007/s00775-022-01931-w.
  • Faghfouri AH, Zarezadeh M, Aghapour B, et al. Clinical efficacy of zinc supplementation in improving antioxidant defense system: a comprehensive systematic review and time-response meta-analysis of controlled clinical trials. Eur J Pharmacol. 2021;907:174243. doi: 10.1016/j.ejphar.2021.174243.
  • Cheng Y, Chen H. Aberrance of zinc metalloenzymes-induced human diseases and its potential mechanisms. Nutrients. 2021;13(12):4456. doi: 10.3390/nu13124456.
  • Wu CY, Steffen J, Eide DJ. Cytosolic superoxide dismutase (SOD1) is critical for tolerating the oxidative stress of zinc deficiency in yeast. PLoS One. 2009;4(9):e7061. doi: 10.1371/journal.pone.0007061.
  • Marreiro DD, Cruz KJ, Morais JB, et al. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017;6(2):24. doi: 10.3390/antiox6020024.
  • Liu M-J, Bao S, Gálvez-Peralta M, et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 2013;3(2):386–400. doi: 10.1016/j.celrep.2013.01.009.
  • Uzzo RG, Leavis P, Hatch W, et al. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res. 2002;8(11):3579–3583.
  • Li C, Guo S, Gao J, et al. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J Nutr Biochem. 2015;26(2):173–183. doi: 10.1016/j.jnutbio.2014.10.005.
  • Kuźmicka W, Manda-Handzlik A, Cieloch A, et al. Zinc supplementation modulates NETs release and neutrophils’ degranulation. Nutrients. 2020;13(1):51. doi: 10.3390/nu13010051.
  • Chamardani TM, Amiritavassoli S. Inhibition of NETosis for treatment purposes: friend or foe? Mol Cell Biochem. 2022;477(3):673–688. doi: 10.1007/s11010-021-04315-x.
  • Mousavi SM, Djafarian K, Mojtahed A, et al. The effect of zinc supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol. 2018;834:10–16. doi: 10.1016/j.ejphar.2018.07.019.
  • Kırkıl G, Hamdi Muz M, Seçkin D, et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir Med. 2008;102(6):840–844. doi: 10.1016/j.rmed.2008.01.010.
  • Atalay Y, Arcasoy A, Kürkçüoğlu M. Oral plasma zinc tolerance test in patients with protein energy malnutrition. Arch Dis Child. 1989;64(11):1608–1611. doi: 10.1136/adc.64.11.1608.
  • Agarwal AR, Kadam S, Brahme A, et al. Systemic immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respir Res. 2019;20(1):171. doi: 10.1186/s12931-019-1139-2.
  • Bruzzaniti S, Bocchino M, Santopaolo M, et al. An immunometabolic pathomechanism for chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A. 2019;116(31):15625–15634. doi: 10.1073/pnas.1906303116.
  • Liu Z, Villareal L, Goodla L, et al. Iron promotes glycolysis to drive colon tumorigenesis. Biochim Biophys Acta Mol Basis Dis. 2023;1869(8):166846. doi: 10.1016/j.bbadis.2023.166846.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033. doi: 10.1126/science.1160809.
  • Kao CC, Hsu JW, Bandi V, et al. Glucose and pyruvate metabolism in severe chronic obstructive pulmonary disease. J Appl Physiol. 2012;112(1):42–47. doi: 10.1152/japplphysiol.00599.2011.
  • Zhao H, Dennery PA, Yao H. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2018;314(4):L544–L554. doi: 10.1152/ajplung.00521.2017.
  • Soto-Heredero G, Gomez de Las Heras MM, Gabande-Rodriguez E, et al. Glycolysis - a key player in the inflammatory response. FEBS J. 2020;287(16):3350–3369. doi: 10.1111/febs.15327.
  • Ishida S, Andreux P, Poitry-Yamate C, et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A. 2013;110(48):19507–19512. doi: 10.1073/pnas.1318431110.
  • Ramchandani D, Berisa M, Tavarez DA, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun. 2021;12(1):7311. doi: 10.1038/s41467-021-27559-z.
  • Zeng H, Saari JT, Johnson WT. Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. J Nutr. 2007;137(1):14–18. doi: 10.1093/jn/137.1.14.
  • Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism. Front Mol Biosci. 2021;8:711227. doi: 10.3389/fmolb.2021.711227.
  • Lukaski HC. Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr. 2005;81(5):1045–1051. doi: 10.1093/ajcn/81.5.1045.
  • Kim JK, Lee C, Lim SW, et al. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nat Commun. 2020;11(1):4557. doi: 10.1038/s41467-020-18425-5.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi: 10.1038/nrd2467.
  • Shen H, MacDonald R, Bruemmer D, et al. Zinc deficiency alters lipid metabolism in LDL receptor deficient mice treated with rosiglitazone. J Nutr. 2007;137(11):2339–2345. doi: 10.1093/jn/137.11.2339.
  • Shi Y, Zou Y, Shen Z, et al. Trace elements, PPARs, and metabolic syndrome. Int J Mol Sci. 2020;21(7):2612. doi: 10.3390/ijms21072612.
  • Allison ME, Fearon DT. Enhanced immunogenicity of aldehyde-bearing antigens: a possible link between innate and adaptive immunity. Eur J Immunol. 2000;30(10):2881–2887. doi: 10.1002/1521-4141(200010)30:10.
  • Feghali-Bostwick CA, Gadgil AS, Otterbein LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(2):156–163. doi: 10.1164/rccm.200701-014OC.
  • Packard TA, Li QZ, Cosgrove GP, et al. COPD is associated with production of autoantibodies to a broad spectrum of self-antigens, correlative with disease phenotype. Immunol Res. 2013;55(1-3):48–57. doi: 10.1007/s12026-012-8347-x.
  • Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173(10):1114–1121. doi: 10.1164/rccm.200506-859OC.
  • Sethi S. Infection as a comorbidity of COPD. Eur Respir J. 2010;35(6):1209–1215. doi: 10.1183/09031936.00081409.
  • Han Y, Hua J, He B, et al. Inhaled antibiotics and airway bacterial decolonization for patients with chronic obstructive pulmonary disease: the rationale and future. J Transl Int Med. 2022;10(3):181–184. doi: 10.2478/jtim-2022-0005.
  • Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev. 2001;14(2):336–363. doi: 10.1128/CMR.14.2.336-363.2001.
  • Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med. 2020;75:100864. doi: 10.1016/j.mam.2020.100864.
  • Kosman DJ. Energy metabolism, oxygen flux, and iron in bacteria: the Mossbauer report. J Biol Chem. 2019;294(1):63–64. doi: 10.1074/jbc.H118.006703.
  • Qiu DH, Huang ZL, Zhou T, et al. In vitro inhibition of bacterial growth by iron chelators. FEMS Microbiol Lett. 2011;314(2):107–111. doi: 10.1111/j.1574-6968.2010.02153.x.
  • Cross JH, Bradbury RS, Fulford AJ, et al. Oral iron acutely elevates bacterial growth in human serum. Sci Rep. 2015;5(1):16670. doi: 10.1038/srep16670.
  • Kao JK, Wang SC, Ho LW, et al. Chronic iron overload results in impaired bacterial killing of THP-1 derived macrophage through the inhibition of lysosomal acidification. PLoS One. 2016;11(5):e0156713. doi: 10.1371/journal.pone.0156713.
  • Ridge PG, Zhang Y, Gladyshev VN. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS One. 2008;3(1):e1378. doi: 10.1371/journal.pone.0001378.
  • Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114(3):377–390. doi: 10.1111/mmi.14522.
  • Fu Y, Chang FM, Giedroc DP. Copper transport and trafficking at the host-bacterial pathogen interface. Acc Chem Res. 2014;47(12):3605–3613. doi: 10.1021/ar500300n.
  • Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. Int J Mol Sci. 2019;20(1):175. doi: 10.3390/ijms20010175.
  • Prohaska JR, Lukasewycz OA. Copper deficiency suppresses the immune response of mice. Science. 1981;213(4507):559–561. doi: 10.1126/science.7244654.
  • Babu U, Failla ML. Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient rats. J Nutr. 1990;120(12):1692–1699. doi: 10.1093/jn/120.12.1692.
  • Samanovic MI, Ding C, Thiele DJ, et al. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe. 2012;11(2):106–115. doi: 10.1016/j.chom.2012.01.009.
  • Babu U, Failla ML. Copper status and function of neutrophils are reversibly depressed in marginally and severely copper-deficient rats. J Nutr. 1990;120(12):1700–1709. doi: 10.1093/jn/120.12.1700.
  • Ramani PK, Parayil Sankaran B. Menkes disease. In: statPearls. Treasure Island (FL): StatPearls Publishing; 2024.
  • Wong SM, Gawronski J, Akerley BJ. Copper efflux system required in murine lung infection by Haemophilus influenzae composed of a canonical ATPase gene and tandem chaperone gene copies. Infect Immun. 2023;91(5):e0009123. doi: 10.1128/iai.00091-23.
  • Eijkelkamp BA, Morey JR, Neville SL, et al. Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathog. 2019;15(8):e1007957. doi: 10.1371/journal.ppat.1007957.
  • McDevitt CA, Ogunniyi AD, Valkov E, et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011;7(11):e1002357. doi: 10.1371/journal.ppat.1002357.
  • Brazel EB, Tan A, Neville SL, et al. Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model. Cell Rep. 2022;38(2):110202. doi: 10.1016/j.celrep.2021.110202.
  • Zalewski PD, Truong-Tran AQ, Grosser D, et al. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review. Pharmacol Ther. 2005;105(2):127–149. doi: 10.1016/j.pharmthera.2004.09.004.
  • Joshi PC, Mehta A, Jabber WS, et al. Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. Am J Respir Cell Mol Biol. 2009;41(2):207–216. doi: 10.1165/rcmb.2008-0209OC.
  • Skalny AV, Skalnaya MG, Grabeklis AR, et al. Zinc deficiency as a mediator of toxic effects of alcohol abuse. Eur J Nutr. 2018;57(7):2313–2322. doi: 10.1007/s00394-017-1584-y.
  • Lassi ZS, Moin A, Bhutta ZA. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database Syst Rev. 2016;12(12):CD005978. doi: 10.1002/14651858.CD005978.pub3.
  • Xu Z, Wang P, Wang H, et al. Zinc excess increases cellular demand for iron and decreases tolerance to copper in Escherichia coli. J Biol Chem. 2019;294(45):16978–16991. doi: 10.1074/jbc.RA119.010023.
  • Kambe T, Weaver BP, Andrews GK. The genetics of essential metal homeostasis during development. Genesis. 2008;46(4):214–228. doi: 10.1002/dvg.20382.
  • Li Y, Du Y, Zhou Y, et al. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 2023;21(1):327. doi: 10.1186/s12964-023-01267-1.
  • Chen Z, Jiang R, Chen M, et al. Multi-copper ferroxidase deficiency leads to iron accumulation and oxidative damage in astrocytes and oligodendrocytes. Sci Rep. 2019;9(1):9437. doi: 10.1038/s41598-019-46019-9.
  • Bielli P, Calabrese L. Structure to function relationships in ceruloplasmin: a ‘moonlighting’ protein. Cell Mol Life Sci. 2002;59(9):1413–1427. doi: 10.1007/s00018-002-8519-2.
  • Doguer C, Ha JH, Collins JF. Intersection of iron and copper metabolism in the mammalian intestine and liver. Compr Physiol. 2018;8(4):1433–1461. doi: 10.1002/cphy.c170045.
  • Bento I, Peixoto C, Zaitsev VN, et al. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 2):240–248. doi: 10.1107/S090744490604947X.
  • Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22(1):439–458. doi: 10.1146/annurev.nutr.22.012502.114457.
  • Ward DM, Kaplan J. Ferroportin-mediated iron transport: expression and regulation. Biochim Biophys Acta. 2012;1823(9):1426–1433. doi: 10.1016/j.bbamcr.2012.03.004.
  • Vasilyev VB. Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals. 2019;32(2):195–210. doi: 10.1007/s10534-019-00189-1.
  • Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem. 2014;5(2):204–215. doi: 10.4331/wjbc.v5.i2.204.
  • Kondaiah P, Yaduvanshi PS, Sharp PA, et al. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients. 2019;11(8):1885. doi: 10.3390/nu11081885.
  • Lee J, Peña MMO, Nose Y, et al. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002;277(6):4380–4387. doi: 10.1074/jbc.M104728200.
  • Kim J, Wessling-Resnick M. The role of iron metabolism in lung inflammation and injury. J Allergy Ther. 2012;3(Suppl 4):004. doi: 10.4172/2155-6121.S4-004.
  • Neves J, Haider T, Gassmann M, et al. Iron homeostasis in the lungs-a balance between health and disease. Pharmaceuticals. 2019;12(1):5. doi: 10.3390/ph12010005.
  • Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem. 2022;414(25):7337–7361. doi: 10.1007/s00216-022-04259-1.
  • Zhang R, Li L, Sultanbawa Y, et al. X-ray fluorescence imaging of metals and metalloids in biological systems. Am J Nucl Med Mol Imaging. 2018;8:169–188.
  • Doble PA, de Vega RG, Bishop DP, et al. Laser ablation-inductively coupled plasma-mass spectrometry imaging in biology. Chem Rev. 2021;121(19):11769–11822. doi: 10.1021/acs.chemrev.0c01219.
  • Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics. 2019;11(1):29–49. doi: 10.1039/c8mt00235e.
  • Hare DJ, New EJ, de Jonge MD, et al. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem Soc Rev. 2015;44(17):5941–5958. doi: 10.1039/c5cs00055f.
  • Emilie Munk D, Teicher Kirk F, Vendelbo M, et al. Positron emission tomography using 64-copper as a tracer for the study of copper-related disorders. J Vis Exp. 2023;(194). doi: 10.3791/65109.
  • Danzeisen R, Araya M, Harrison B, et al. How reliable and robust are current biomarkers for copper status? Br J Nutr. 2007;98(4):676–683. doi: 10.1017/S0007114507798951.
  • Scales WE, Vander AJ, Brown MB, et al. Human circadian rhythms in temperature, trace metals, and blood variables. J Appl Physiol. 1988;65(4):1840–1846. doi: 10.1152/japl.1988.65.4.1840.
  • Parmalee NL, Aschner M. Metals and circadian rhythms. Adv Neurotoxicol. 2017;1:119–130. doi: 10.1016/bs.ant.2017.07.003.