2,655
Views
119
CrossRef citations to date
0
Altmetric
Original

Mimetic Peptides as Blockers of Connexin Channel-Facilitated Intercellular Communication

&
Pages 265-273 | Received 24 Sep 2004, Accepted 26 Oct 2007, Published online: 20 Aug 2009

REFERENCES

  • Becker D L, Evans W H, Green C R, Warner A. Functional analysis of amino-acid-sequences in connexin43 involved in intercellular communication through gap-junctions. J Cell Sci 1995; 108: 1455–1467
  • Berman R S, Martin P EM, Evans W H, Griffith T M. Relative contributions of NO and gap-junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size. Microvasc Res 2002; 63: 115–128
  • Berthoud V M, Beyer E C, Seul K H. Peptide inhibitors of intercellular communication. Am J Physiol Lung Cell Mol Physiol 2000; 279: L619–L622
  • Boitano S, Dirksen E R, Evans W H. Sequence specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 1998; 23: 1–9
  • Boitano S, Evans W H. Connexin mimetic peptides reversibly inhibit Ca2 + signaling through gap junctions in airway cells. Am J Physiol Lung Cell Mol Physiol 2000; 279: L623–L630
  • Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 2007; 204: 1303–1310
  • Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin P EM, Evans W H, Leybaert L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 2003b; 197: 205–213
  • Braet K, Vandamme W, Martin P EM, Evans W H, Leybaert L. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 2003a; 33: 37–48
  • Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 2006; 27: 166–176
  • Chaytor A T, Evans W H, Griffith T M. Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol (London) 1997; 503: 99–110
  • Chaytor A T, Martin P EM, Evans W H, Randall M D, Griffith T M. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap-junctional communication. J Physiol (London) 1999; 520: 539–550
  • Clarke T C, Thomas D, Petersen J S, Evans W H, Martin P EM. The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43. Br J Pharmacol 2006; 147: 486–495
  • Contreras J E, Saez J C, Bukauskas F F, Bennett M VL. Gating and regulation of connexin 43 (U43) hemichannels. Proc Natl Acad Sci U S A 2003; 100: 11388–11393
  • Contreras J E, Sanchez H A, Eugenin E A, Speidel D, Theis M, Willecke K, Bukauskas F F, Bennett M VL, Saez J C. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap-junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 2002; 99: 495–500
  • Contreras J E, Sanchez H A, Veliz L P, Bukauskas F F, Bennett M VL, Saez J C. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Rev 2004; 47: 290–303
  • D'Hondt C, Ponsaerts R, Srinivas S P, Vereecke J, Himpens B. Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions. Invest Ophthalmol Vis Sci 2007; 48: 120–133
  • Dahl G, Nonner W, Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J 1994; 67: 1816–1822
  • De Vuyst E, Decrock E, Cabooter L, Dubyak G R, Naus C C, Evans W H, Leybaert L. Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 2006; 25: 34–44
  • De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus C C, Evans W H, Leybaert L. Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 2007; 18: 34–46
  • Dutta A K, Sabirov R Z, Uramoto H, Okada Y. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions. J Physiol (London) 2004; 559: 799–812
  • Ebihara L. New roles for connexons. News Physiol Sci 2003; 18: 100–103
  • Eltzschig H K, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson S C, Colgan S P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 2006; 99: 1100–1108
  • Eugenin E A, Gonzalez H, Saez C G, Saez J C. Gap-junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes. Am J Physiol 1998; 274: G1109–G1116
  • Evans W H, Boitano S. Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 2001; 29: 606–612
  • Evans W H, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006; 397: 1–14
  • Figueroa X F, Isakson B E, Duling B R. Vascular gap junctions in hypertension. Hypertension 2006; 48: 804–811
  • Fleishman S J, Sabag A D, Ophir E, Avraham K B, Ben-Tal N. The structural context of disease-causing mutations in gap junctions. J Biol Chem 2006; 281: 28958–28963
  • Gomes P, Srinivas S P, Vereecke J, Himpens B. Gap-junctional intercellular communication in bovine corneal endothelial cells. Exp Eye Res 2006; 83: 1225–1237
  • Goodenough D A, Paul D L. Beyond the gap: Functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003; 4: 285–294
  • Griffith T M. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis?. Br J Pharmacol 2004; 141: 881–903
  • Hirst-Jensen B J, Sahoo P, Kieken F, Delmar M, Sorgen P L. Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 2007; 282: 5801–5813
  • Ilvesaro J, Tavi P, Tuukkanen J. Connexin-mimetic peptide Gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord 2001; 2: 10
  • Isakson B E, Duling B R. Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 2005; 97: 44–51
  • Isakson B E, Olsen C E, Boitano S. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2 + waves in ciliated tracheal epithelial cells. Respir Res 2006; 7: 105
  • Isakson B E, Ramos S I, Duling B R. Ca2 + and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 2007; 100: 246–254
  • Kandyba E E, Hodgins M B, Martin P E. A murine living skin equivalent amenable to live-cell imaging: analysis of the roles of connexins in the epidermis. J Invest Dermatol 2007
  • Kwak B R, Jongsma H J. Selective inhibition of gap junction channel activity by synthetic peptides. J Physiol 1999; 516: 679–685, (Pt 3)
  • Laird D W. Life cycle of connexins in health and disease. Biochem J 2006; 394: 527–543
  • Law L Y, Zhang W V, Stott N S, Becker D L, Green C R. In vitro optimization of antisense oligodeoxynucleotide design: an example using the connexin gene family. J Biomol Tech 2006; 17: 270–282
  • Liu F, Arce F T, Ramachandran S, Lal R. Nanomechanics of hemichannel conformations: connexin flexibility underlying channel opening and closing. J Biol Chem 2006; 281: 23207–23217
  • Locke D, Wang L X, Bevans C G, Lee Y C, Harris A L. Open pore block of connexin26 and connexin32 hemichannels by neutral, acidic and basic glycoconjugates. Cell Commun Adhes 2003; 10: 239–244
  • Locovei S, Wang J J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 2006; 580: 239–244
  • Martin P EM, Wall C, Griffith T M. Effects of connexin-mimetic peptides on gap junction functionality and connexin expression in cultured vascular cells. Br J Pharmacol 2005; 144: 617–627
  • Mather S, Dora K A, Sandow S L, Winter P, Garland C J. Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 2005; 97: 399–407
  • Matsue H, Yao J, Matsue K, Nagasaka A, Sugiyama H, Aoki R, Kitamura M, Shimada S. Gap junction-mediated intercellular communication between dendritic cells (DCs) is required for effective activation of DCs. J Immunol 2006; 176: 181–190
  • Mendoza-Naranjo A, Saez P J, Johansson C C, Ramirez M, Mandakovic D, Pereda C, Lopez M N, Kiessling R, Saez J C, Salazar-Onfray F. Functional gap junctions facilitate melanoma antigen transfer and cross-presentation between human dendritic cells. J Immunol 2007; 178: 6949–6957
  • Neijssen J, Herberts C, Drijfhout J W, Reits E, Janssen L, Neefjes J. Cross-presentation by intercellular peptide transfer through gap junctions. Nature 2005; 434: 83–88
  • Oviedo-Orta E, Evans W H. Gap junctions and connexins: potential contributors to the immunological synapse. J Leukoc Biol 2002; 72: 636–642
  • Oviedo-Orta E, Gasque P, Evans W H. Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. FASEB J 2001; 15: 768–774
  • Pearson R A, Dale N, Llaudet E, Mobbs P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 2005; 46: 731–744
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin 1beta release by the ATP-gated P2X7 receptor. EMBO Journal 2006; 25: 5071–5082
  • Przyklenk K, Maynard M, Darling C E, Whittaker P. Pretreatment with D-myo-inositol trisphosphate reduces infarct size in rabbit hearts: Role of inositol trisphosphate receptors and gap junctions in triggering protection. J Pharmacol Exp Ther 2005; 314: 1386–1392
  • Quist A P, Rhee S K, Lin H, Lal R. Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 2000; 148: 1063–1074
  • Rahman S, Evans W H. Topography of connexin32 in rat-liver gap-junctions. Evidence for an intramolecular disulfide linkage connecting the 2 extracellular peptide loops. J Cell Sci 1991; 100: 567–578
  • Ramachandran S, Xie L H, John S A, Subramaniam S, Lal R. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE 2007; 2: e712
  • Retamal M A, Schalper K A, Shoji K F, Bennett M VL, Saez J C. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 2007; 104: 8322–8327
  • Romanov R A, Rogachevskaja O A, Bystrova M F, Jiang P H, Margolskee R F, Kolesnikov S S. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 2007; 26: 657–667
  • Saez J C, Retamal M A, Basilio D, Bukauskas F F, Bennett M VL. Connexin-based gap junction hemichannels: Gating mechanisms. Biochim Biophys Acta 2005; 1711: 215–224
  • Seki A, Duffy H S, Coombs W, Spray D C, Taffet S M, Delmar M. Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region. Circ Res 2004; 95: e22–e28
  • Shintani-Ishida K, Uemura K, Yoshida K. Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 2007; 293: H1714–H1720
  • Shiroshita-Takeshita A, Sakabe M, Haugan K, Hennan J K, Nattel S. Model-dependent effects of the gap junction conduction-enhancing antiarrhythmic peptide rotigaptide (ZP123) on experimental atrial fibrillation in dogs. Circulation 2007; 115: 310–318
  • Sosinsky G E, Nicholson B J. Structural organization of gap junction channels. Biochim Biophys Acta 2005; 1711: 99–125
  • Spray D C, Rozental R, Srinivas M. Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets 2002; 3: 455–464
  • Tong D, Li T Y, Naus K E, Bai D, Kidder G M. In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J Cell Sci 2007; 120: 4016–4024
  • Wang J, Ma M, Locovei S, Keane R W, Dahl G. Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters. Am J Physiol Cell Physiol 2007; 293: C1112–C1119
  • Warner A, Clements D K, Parikh S, Evans W H, De Haan R L. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 1995; 488: 721–728, (Pt 3)
  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 2002; 383: 725–737
  • Wong C W, Christen T, Roth I, Chadjichristos C E, Derouette J P, Foglia B F, Chanson M, Goodenough D A, Kwak B R. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 2006; 12: 950–954
  • Zimmer D B, Green C R, Evans W H, Gilula N B. Topological analysis of the major protein in isolated intact rat liver gap junctions and gap junction-derived single membrane structures. J Biol Chem 1987; 262: 7751–7763

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.