1,082
Views
29
CrossRef citations to date
0
Altmetric
Original

Molecular Diversity of Connexin and Pannexin Genes in the Retina of the Zebrafish Danio rerio

, , , &
Pages 169-183 | Received 06 Nov 2007, Accepted 17 Dec 2007, Published online: 11 Jul 2009

REFERENCES

  • Bai S, Schoenfeld A, Pietrangelo A, Burk R D. Basal promoter of the rat connexin 32 gene: identification and characterization of an essential element and its DNA-binding protein. Mol Cell Biol 1995; 15: 1439–1445
  • Bai S, Spray D C, Burk R D. Identification of proximal and distal regulatory elements of the rat connexin32 gene. Biochim Biophys Acta 1993; 1216: 197–204
  • Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born T L, Usman N, Staroverov D, Lukyanov S, Panchin Y. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 2004; 83: 706–716
  • Barbe M T, Monyer H, Bruzzone R. Cell-cell communication beyond connexins: the pannexin channels. Physiology 2006; 21: 103–114
  • Battilana J, Bonatto S L, Freitas L B, Hutz M H, Weimer T A, Callegari-Jacques S M, Batzer M A, Hill K, Hurtado A M, Tsuneto L T, Petzl-Erler M L, Salzano F M. Alu insertions versus blood group plus protein genetic variability in four Amerindian populations. Ann Hum Biol 2002; 29: 334–347
  • Bauer R, Loer B, Ostrowski K, Martini J, Weimbs A, Lechner H, Hoch M. Intercellular communication: the Drosophila innexin multiprotein family of gap junction proteins. Chem Biol 2005; 12: 515–526
  • Becker D, Bonness V, Mobbs P. Cell coupling in the retina: patterns and purpose. Cell Biol Int 1998; 22: 781–792
  • Belluardo N, Trovato-Salinaro A, Mudo G, Hurd Y L, Condorelli D F. Structure, chromosomal localization, and brain expression of human Cx36 gene. J Neurosci Res 1999; 57: 740–752
  • Bruzzone R, Hormuzdi S G, Barbe M T, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 2003; 100: 13644–13649
  • Cai X, Lytton J. Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 2004; 279: 5867–5876
  • Cason N, White T W, Cheng S, Goodenough D A, Valdimarsson G. Molecular cloning, expression analysis, and functional characterization of connexin44.1: A zebrafish lens gap junction protein. Dev Dyn 2001; 221: 238–247
  • Cheng S, Christie T, Valdimarsson G. Expression of connexin48.5, connexin44.1, and connexin43 during zebrafish (Danio rerio) lens development. Dev Dyn 2003; 228: 709–715
  • Cheng S, Shakespeare T, Mui R, White T W, Valdimarsson G. Connexin 48.5 is required for normal cardiovascular function and lens development in zebrafish embryos. J Biol Chem 2004; 279: 36993–37003
  • Common J E, O'Toole E A, Leigh I M, Thomas A, Griffiths W A, Venning V, Grabczynska S, Peris Z, Kansky A, Kelsell D P. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J Invest Dermatol 2005; 125: 920–927
  • Conway B R. Color vision: mice see hue too. Curr Biol 2007; 17: R457–460
  • Condorelli D F, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 1998; 10: 1202–1208
  • Cruciani V, Mikalsen S O. Evolutionary selection pressure and family relationships among connexin genes. Biol Chem 2007; 388: 253–264
  • Curwen V, Eyras E, Andrews T D, Clarke L, Mongin E, Searle S M, Clamp M. The Ensembl automatic gene annotation system. Genome Res 2004; 14: 942–950
  • Dahl G, Locovei S. Pannexin: to gap or not to gap, is that a question?. IUBMB Life 2006; 58: 409–419
  • Demb J B, Pugh E N. Connexin36 forms synapses essential for night vision. Neuron 2002; 36: 551–553
  • Dermietzel R, Kremer M, Paputsoglu G, Stang A, Skerrett I M, Gomes D, Srinivas M, Janssen-Bienhold U, Weiler R, Nicholson B J, Bruzzone R, Spray D C. Molecular and functional diversity of neural connexins in the retina. J Neurosci 2000; 20: 8331–8343
  • Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov V I. Expression of pannexin family of proteins in the retina. FEBS Lett 2006; 580: 2178–2182
  • Eastman S D, Chen T H, Falk M M, Mendelson T C, Iovine M K. Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics 2006; 87: 265–274
  • Eiberger J, Degen J, Romualdi A, Deutsch U, Willecke K, Sohl G. Connexin genes in the mouse and human genome. Cell Commun Adhes 2001; 8: 163–165
  • Filshie B K, Flower N E. Junctional structures in hydra. J Cell Sci 1977; 23: 151–172
  • Fraser S E, Green C R, Bode H R, Gilula N B. Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 1987; 237: 49–55
  • Goldsmith P, Harris W A. The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol 2003; 14: 11–18
  • Guldenagel M, Ammermuller J, Feigenspan A, Teubner B, Degen J, Sohl G, Willecke K, Weiler R. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 2001; 21: 6036–6044
  • Haverkamp S, Wassle H, Duebel J, Kuner T, Augustine G J, Feng G, Euler T. The primordial, blue-cone color system of the mouse retina. J Neurosci 2005; 25: 5438–5445
  • Hertzberg E L, Skibbens R V. A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues. Cell 1984; 39: 61–69
  • Hombach S, Janssen-Bienhold U, Sohl G, Schubert T, Bussow H, Ott T, Weiler R, Willecke K. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 2004; 19: 2633–2640
  • Huang Y J, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper S D. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 2007; 104: 6436–6441
  • Jacobs G H, Williams G A, Cahill H, Nathans J. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 2007; 315: 1723–1725
  • Janssen-Bienhold U, Schultz K, Hoppenstedt W, Weiler R. Molecular diversity of gap junctions between horizontal cells. Prog Brain Res 2001a; 131: 93–107
  • Janssen-Bienhold U, Schultz K, Gellhaus A, Schmidt P, Ammermuller J, Weiler R. Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex. Vis Neurosci 2001b; 18: 169–178
  • Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R. Hemichannel-mediated inhibition in the outer retina. Science 2001; 292: 1178–1180
  • Leithe E, Sirnes S, Omori Y, Rivedal E. Downregulation of gap junctions in cancer cells. Crit Rev Oncogene 2006; 12: 225–256
  • Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: Function without a gap. Proc Natl Acad Sci U S A 2006a; 103: 7655–7659
  • Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 2006b; 580: 239–244
  • Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermuller J, Brune H, Kirsch T, Pieper M, Degen J, Kruger O, Willecke K, Weiler R. Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 2005; 25: 566–576
  • McLachlan E, White T W, Ugonabo C, Olson C, Nagy J I, Valdimarsson G. Zebrafish Cx35: cloning and characterization of a gap junction gene highly expressed in the retina. J Neurosci Res 2003; 73: 753–764
  • Meier C, Dermietzel R. Electrical synapses—gap junctions in the brain. Results Probl Cell Differ 2006; 43: 99–128
  • O'Brien J, Bruzzone R, White T W, Al-Ubaidi M R, Ripps H. Cloning and expression of two related connexins from the perch retina define a distinct subgroup of the connexin family. J Neurosci 1998; 18: 7625–7637
  • Pal J D, Liu X, Mackay D, Shiels A, Berthoud V M, Beyer E C, Ebihara L. Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. Am J Physiol Cell Physiol 2000; 279: C596–C602
  • Panchin Y V. Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 2005; 208: 1415–1419
  • Paul D L, Ebihara L, Takemoto L J, Swenson K I, Goodenough D A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 1991; 115: 1077–1089
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 2006; 25: 5071–5082
  • Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30: e36
  • Plantard L, Huber M, Macari F, Meda P, Hohl D. Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis. Hum Mol Genet 2003; 12: 3287–3294
  • Qu Y, Tang W, Dahlke I, Ding D, Salvi R, Sohl G, Willecke K, Chen P, Lin X. Analysis of connexin subunits required for the survival of vestibular hair cells. J Comp Neurol 2007; 504: 499–507
  • Rash J E, Yasumura T, Davidson K G, Furman C S, Dudek F E, Nagy J I. Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Commun Adhes 2001; 8: 315–320
  • Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R. Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 2005; 21: 3277–3290
  • Robson J G, Maeda H, Saszik S M, Frishman L J. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 2004; 44: 3253–3268
  • Shelley J, Dedek K, Schubert T, Feigenspan A, Schultz K, Hombach S, Willecke K, Weiler R. Horizontal cell receptive fields are reduced in connexin57-deficient mice. Eur J Neurosci 2006; 23: 3176–3186
  • Shields C R, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M. Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol 2007; 501: 765–779
  • Striedinger K, Petrasch-Parwez E, Zoidl G, Napirei M, Meier C, Eysel U T, Dermietzel R. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur J Neurosci 2005; 22: 605–616
  • Taylor J S, Van de Peer Y, Braasch I, Meyer A. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 2001; 356: 1661–1679
  • Taylor J S, Braasch I, Frickey T, Meyer A, Van de Peer Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 2003; 13: 382–390
  • Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680
  • Uchida S, Sakai S, Furuichi T, Hosoda H, Toyota K, Ishii T, Kitamoto A, Sekine M, Koike K, Masushige S, Murphy G, Silva A J, Kida S. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav 2006; 5: 96–106
  • Vinken M, Vanhaecke T, Papeleu P, Snykers S, Henkens T, Rogiers V. Connexins and their channels in cell growth and cell death. Cell Signal 2006; 18: 592–600
  • Weiler R, Pottek M, He S, Vaney D I. Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Res Brain Res Rev 2000; 32: 121–129
  • Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray D C, Dermietzel R. Molecular cloning and functional expression of zfCx52.6: A novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem 2004; 279: 2913–2921
  • Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes H W, Dahl G, Dermietzel R. Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 2007; 146: 9–16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.