1,526
Views
64
CrossRef citations to date
0
Altmetric
Original

Currently Used Methods for Identification and Characterization of Hemichannels

, , &
Pages 207-218 | Received 07 Jan 2008, Accepted 25 Jan 2008, Published online: 11 Jul 2009

REFERENCES

  • Ahmad S, Evans W H. Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: Implications for the assembly of gap junctions. Biochem J 2002; 365: 693–699
  • Bao L, Locovei S., Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 2004; 572: 65–68
  • Barbe M T, Monyer H, Bruzzone R. Cell-cell communication beyond connexins: The pannexin channels. Physiology 2006; 21: 103–114
  • Belliveau D J, Bani-Yaghoub M, McGirr B, Naus C C, Rushlow W J. Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP. J Biol Chem 2006; 281: 20920–20931
  • Bennett M V, Contreras J E, Bukauskas F F, Sáez J C. New roles for astrocytes: Gap junction hemichannels have something to communicate. Trends Neurosci 2003; 26: 610–617
  • Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G. Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 2007; 282: 31733–31743
  • Braet K, Aspeslagh S, Vandamme W, Willecke K, Martin P E, Evans W H, Leybaert L. Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. J Cell Physiol 2003; 197: 205–213
  • Braet K, Vandamme W, Martin P E, Evans W H, Leybaert L. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 2003; 33: 37–48
  • Bruzzone R, Barbe M T, Jakob N J, Monyer H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 2005; 92: 1033–1043
  • Bruzzone R, Hormuzdi S G, Barbe M T, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 2003; 100: 13644–13649
  • Bukauskas F F, Kreuzberg M M, Rackauskas M, Bukauskiene A, Bennett M V, Verselis V K, Willecke K. Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: Implications for atrioventricular conduction in the heart. Proc Natl Acad Sci U S A 2006; 103: 9726–9731
  • Cherian P P, Siller-Jackson A. J., Gu S, Wang X, Bonewald L F, Sprague E, Jiang J X. Mechanical strain opens connexin 43 hemichannels in osteocytes: A novel mechanism for the release of prostaglandin. Mol Biol Cell 2005; 16: 3100–3106
  • Contreras J E, Sánchez H A, Eugenín E A, Speidel D, Theis M, Willecke K, Bukauskas F F, Bennett M V, Sáez J C. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 2002; 99: 495–500
  • Contreras J E, Sáez J C, Bukauskas F F, Bennett M V. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 2003; 100: 11388–11393
  • Cooper C D, Lampe P D. Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem 2002; 277: 44962–44968
  • Cotrina M L, Lin J H, Alves-Rodrigues A., Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus C C, Nedergaard M. Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 1998; 95: 15735–15740
  • De Vuyst E, Decrock E, Cabooter L, Dubyak G R, Naus C C, Evans W H, Leybaert L. Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 2006; 25: 34–44
  • De Vuyst E, Decrock E, De Bock M., Yamasaki H, Naus C C, Evans W H, Leybaert L. Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 2007; 18: 34–46
  • DeVries S H, Schwartz E A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 1992; 445: 201–230
  • Dobrowolski R, Sommershof A, Willecke K. Some oculodentodigitial dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to defecient gap junction channels. J Membr Biol 2007; 219: 9–17
  • Eltzschig H K, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson S C, Colgan S P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 2006; 99: 1100–1108
  • Evans W H, De Vuyst E., Leybaert L. The gap junction cellular internet: Connexin hemichannels enter the signalling limelight. Biochem J 2006; 397: 1–14
  • Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A, De Flora A. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem 2001; 276: 21642–21648
  • Genetos D C, Kephart C J, Zhang Y, Yellowley C E, Donahue H J. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007; 212: 207–214
  • Goldberg G S, Valiunas V, Brink P R. Selective permeability of gap junction channels. Biochim Biophys Acta 2004; 1662: 96–101
  • Gomes P, Srinivas S P, Van Driessche W., Vereecke J, Himpens B. ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 2005; 46: 1208–1218
  • Gómez-Hernández J M, de Miguel M., Larrosa B, González D, Barrio L C. Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad Sci U S A 2003; 100: 16030–16035
  • Gonzalez D, Gómez-Hernandez J. M., Barrio L C. Species specificity of mammalian connexin-26 to form open voltage-gated hemichannels. FASEB J 2006; 20: 2329–2338
  • Harris A L. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 2007; 94: 120–143
  • Hofer A, Dermietzel R. Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 1998; 24: 141–154
  • Jiang J X, Cherian P P. Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun Adhes 2003; 10: 259–264
  • John S A, Kondo R, Wang S Y, Goldhaber J I, Weiss J N. Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 1999; 274: 236–240
  • Kondo R P, Wang S Y, John S A, Weiss J N, Goldhaber J I. Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 2000; 32: 1859–1872
  • Lai A, Le D N, Paznekas W A, Gifford W D, Jabs E W, Charles A C. Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J Cell Sci 2006; 119: 532–541
  • Lai C P, Bechberger J F, Thompson R J, MacVicar B. A., Bruzzone R, Naus C C. Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 2007; 67: 1545–5154
  • Laird D W. Life cycle of connexins in health and disease. Biochem J 2006; 394: 527–543
  • Li H, Liu T F, Lazrak A, Peracchia C, Goldberg G S, Lampe P D, Johnson R G. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 1996; 134: 1019–1030
  • Locovei S, Scemes E, Qiu F, Spray D C, Dahl G. Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 2007; 581: 483–488
  • Locovei S, Wang J, Dahl G. Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 2006a; 580: 239–244
  • Locovei S, Bao L, Dahl G. Pannexin 1 in erythrocytes: Function without a gap. Proc Natl Acad Sci U S A 2006b; 103: 7655–7659
  • Musil L S, Goodenough D A. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 1991; 115: 1357–1374
  • Cherian P P, Siller-Jackson A. J., Gu S, Wang X, Bonewald L F, Sprague E, Jiang J X. Mechanical strain opens connexin 43 hemichannels in osteocytes: A novel mechanism for the release of prostaglandin. Mol Biol Cell 2005; 16: 3100–3106
  • Pearson R A, Dale N, Llaudet E, Mobbs P. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 2005; 46: 731–744
  • Pelegrin P, Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 2006; 25: 5071–5082
  • Rana S, Dringen R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 2007; 415: 45–48
  • Retamal M A, Cortes C J, Reuss L, Bennett M V, Sáez J C. S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci U S A 2006; 103: 4475–4480
  • Retamal M A, Froger N, Palacios-Prado N, Ezan P, Sáez P J, Sáez J C, Giaume C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 2007a; 27: 13781–13792
  • Retamal M A, Schalper K A, Shoji K F, Bennett M V, Sáez J C. Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential. Proc Natl Acad Sci U S A 2007b; 104: 8322–8327
  • Retamal M A, Schalper K A, Shoji K F, Orellana J A, Bennett M V, Sáez J C. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 2007c; 218: 49–63
  • Sáez J C, Berthoud V M, Brañes M C, Martínez A D, Beyer E C. Plasma membrane channels formed by connexins: Their regulation and functions. Physiol Rev 2003a; 83: 1359–1400
  • Sáez J C, Contreras J E, Bukauskas F F, Retamal M A, Bennett M V. Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 2003b; 179: 9–22
  • Shestopalov V I, Panchin Y. Pannexins and gap junction protein diversity. Cell Mol Life Sci 2007; 65: 376–394
  • Shintani-Ishida K, Uemura K, Yoshida K. Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 2007; 293: 1714–1720
  • Sohl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004; 62: 228–232
  • Spray D C, Ye Z C, Ransom B R. Functional connexin “hemichannels”: A critical appraisal. Glia 2006; 54: 758–773
  • Squecco R, Sassoli C, Nuti F, Martinesi M, Chellini F, Nosi D, Zecchi-Orlandini S, Francini F, Formigli L, Meacci E. Sphingosine 1-phosphate induces myoblast differentiation through Cx43 protein expression: A role for a gap junction-dependent and-independent function. Mol Biol Cell 2006; 17: 4896–4910
  • Stout C E, Costantin J L, Naus C C, Charles A C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 2002; 277: 10482–10488
  • Suadicani S O, Brosnan C F, Scemes E. P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2 + signaling. J Neurosci 2006; 26: 1378–1385
  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006; 281: 21362–21368
  • Tong D, Li T Y, Naus K E, Bai D, Kidder G M. In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells. J Cell Sci 2007; 120: 4016–4024
  • Trexler E B, Bennett M V, Bargiello T A, Verselis V K. Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci U S A 1996; 93: 5836–5841
  • Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A, De Flora A. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem 2001; 276: 21642–21648
  • Valiunas V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 2002; 119: 147–164
  • Valiunas V, Weingart R. Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 2000; 440: 366–379
  • Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin Y V, Baranova A V, Ivanov D V, Skryma R, Prevarskaya N. Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 2006; 174: 535–546
  • Vergara L, Bao X, Cooper M, Bello-Reuss E, Reuss L. Gap-junctional hemichannels are activated by ATP depletion in human renal proximal tubule cells. J Membr Biol 2003; 196: 173–184
  • Wang J, Ma M, Locovei S, Keane R W, Dahl G. Modulation of membrane channel currents by gap junction protein mimetic peptides: Size matters. Am J Physiol Cell Physiol 2007; 293: 1112–1119
  • Ye Z C, Wyeth M S, Baltan-Tekkok S., Ransom B R. Functional hemichannels in astrocytes: A novel mechanism of glutamate release. J Neurosci 2003; 23: 3588–3596

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.