365
Views
26
CrossRef citations to date
0
Altmetric
Original

Structural Changes in the Carboxyl Terminus of the Gap Junction Protein Connexin40 Caused by the Interaction with c-Src and Zonula Occludens-1

, , &
Pages 107-118 | Received 19 Oct 2007, Accepted 11 Dec 2007, Published online: 11 Jul 2009

REFERENCES

  • Anumonwo J M, Taffet S M, Gu H, Chanson M, Moreno A P, Delmar M. The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels. Circ Res 2001; 88: 666–673
  • Barker R J, Price R L, Gourdie R G. Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ Res 2002; 90: 317–324
  • Bouvier D, Kieken F, Sorgen P L. 1H, 13C, and 15N backbone resonance assignments of the carboxyl terminal domain of Connexin40. Biomol NMR Assign 2007; 1: 1–3
  • Burt J M, Fletcher A M, Steele T D, Wu Y, Cottrell G T, Kurjiaka D T. Alteration of Cx43:Cx40 expression ratio in A7r5 cells. Am J Physiol Cell Physiol 2001; 280: C500–C508
  • Calero G, Kanemitsu M, Taffet S M, Lau A F, Delmar M. A 17mer peptide interferes with acidification-induced uncoupling of connexin43. Circ Res 1998; 82: 929–935
  • Cottrell G T, Burt J M. Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am J Physiol Cell Physiol 2001; 281: C1559–C1567
  • Cottrell G T, Lin R, Warn-Cramer B J, Lau A F, Burt J M. Mechanism of v-Src-and mitogen-activated protein kinase-induced reduction of gap junction communication. Am J Physiol Cell Physiol 2003; 284: C511–C520
  • Cottrell G T, Wu Y, Burt J M. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol 2002; 282: C1469–C1482
  • Delaglio F, Grzesiek S, Vuister G W, Zhu G, Pfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277–293
  • Doyle D A, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 1996; 85: 1067–1076
  • Duffy H S, Ashton A W, O'Donnell P, Coombs W, Taffet S M, Delmar M, Spray D C. Regulation of connexin43 protein complexes by intracellular acidification. Circ Res 2004; 94: 215–222
  • Duffy H S, Sorgen P L, Girvin M E, O'Donnell P, Coombs W, Taffet S M, Delmar M, Spray D C. pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 2002; 277: 36706–36714
  • Dunham B, Liu S, Taffet S, Trabka-Janik E, Delmar M, Petryshyn R, Zheng S, Perzova R, Vallano M L. Immunolocalization and expression of functional and nonfunctional cell-to-cell channels from wild-type and mutant rat heart connexin43 cDNA. Circ Res 1992; 70: 1233–1243
  • Dunker A K, Brown C J, Lawson J D, Iakoucheva L M, Obradovic Z. Intrinsic disorder and protein function. Biochemistry 2002; 41: 6573–6582
  • Dunker A K, Obradovic Z. The protein trinity—linking function and disorder. Nat Biotechnol 2001; 19: 805–806
  • Fishman G I, Moreno A P, Spray D C, Leinwand L A. Functional analysis of human cardiac gap junction channel mutants. Proc Natl Acad Sci U S A 1991; 88: 3525–3529
  • Giepmans B N, Moolenaar W H. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998; 8: 931–934
  • Gu H, Ek-Vitorin J F, Taffet S M, Delmar M. Coexpression of connexins 40 and 43 enhances the pH sensitivity of gap junctions: A model for synergistic interactions among connexins. Circ Res 2000a; 86: E98–E103
  • Gu H, Ek-Vitorin J F, Taffet S M, Delmar M. UltraRapid communication: Coexpression of connexins 40 and 43 enhances the pH sensitivityof gap junctions: A model for synergistic interactions among connexins. Circ Res 2000b; 86: 1100
  • He D S, Jiang J X, Taffet S M, Burt J M. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci U S A 1999; 96: 6495–6500
  • Herve J, Bourmeyster N, Sarrouilhe D, Duffy H. Gap junctional complexes: From partners to functions. Prog Biophys Mol Biol 2007; 94: 29–65
  • Hirst-Jensen B J, Sahoo P, Kieken F, Delmar M, Sorgen P L. Characterization of the pH-dependent interaction between the gap junction protein connexin43 carboxyl terminus and cytoplasmic loop domains. J Biol Chem 2007; 282: 5801–5813
  • Homma N, Alvarado J L, Coombs W, Stergiopoulos K, Taffet S M, Lau A F, Delmar M. A particle-receptor model for the insulin-induced closure of connexin43 channels. Circ Res 1998; 83: 27–32
  • Hunter A W, Barker R J, Zhu C, Gourdie R G. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 2005; 16: 5686–5698
  • Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121: 491–502
  • Iwadate M, Asakura T, Williamson M P. C alpha and C beta carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR 1999; 13: 199–211
  • Jia C Y, Nie J, Wu C, Li C, Li S S. Novel Src homology 3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Mol Cell Proteomics 2005; 4: 1155–1166
  • Johnson BAa.B. R. A. NMRView: A computer program for the visualization and analysis of NMR data. J Biomol NMR 1994; 4: 603–614
  • Kanemitsu M Y, Loo L W, Simon S, Lau A F, Eckhart W. Tyrosine phosphorylation of connexin 43 by v-Src is mediated by SH2 and SH3 domain interactions. J Biol Chem 1997; 272: 22824–22831
  • Kay L E, Keifer P, Saarinen T. J Am Chem Soc 1992; 114: 10663
  • Koval M. Pathways and control of connexin oligomerization. Trends Cell Biol 2006; 16: 159–166
  • Lin R, Warn-Cramer B J, Kurata W E, Lau A F. v-Src-mediated phosphorylation of connexin43 on tyrosine disrupts gap junctional communication in mammalian cells. Cell Commun Adhes 2001; 8: 265–269
  • Minezaki Y, Homma K, Nishikawa K. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J Mol Biol 2007; 368: 902–913
  • Morais Cabral J H, Petosa C, Sutcliffe M J, Raza S, Byron O, Poy F, Marfatia S M, Chishti A H, Liddington R C. Crystal structure of a PDZ domain. Nature 1996; 382: 649–652
  • Morley G E, Taffet S M, Delmar M. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 1996; 70: 1294–1302
  • Solan J L, Lampe P D. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 2005; 1711: 154–163
  • Songyang Z, Fanning A S, Fu C, Xu J, Marfatia S M, Chishti A H, Crompton A, Chan A C, Anderson J M, Cantley L C. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997; 275: 73–77
  • Sorgen P L, Duffy H S, Cahill S M, Coombs W, Spray D C, Delmar M, Girvin M E. Sequence-specific resonance assignment of the carboxyl terminal domain of Connexin43. J Biomol NMR 2002; 23: 245–246
  • Sorgen P L, Duffy H S, Sahoo P, Coombs W, Delmar M, Spray D C. Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. J Biol Chem 2004a; 279: 54695–54701
  • Sorgen P L, Duffy H S, Spray D C, Delmar M. pH-Dependent Dimerization of the Carboxyl Terminal Domain of Cx43. Biophys J 2004b; 87: 574–581
  • Stergiopoulos K, Alvarado J L, Mastroianni M, Ek-Vitorin J F, Taffet S M, Delmar M. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ Res 1999; 84: 1144–1155
  • Toyofuku T, Akamatsu Y, Zhang H, Kuzuya T, Tada M, Hori M. c-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes. J Biol Chem 2001; 276: 1780–1788
  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 1998; 273: 12725–12731
  • Valiunas V, Gemel J, Brink P R, Beyer E C. Gap junction channels formed by coexpressed connexin40 and connexin43. Am J Physiol Heart Circ Physiol 2001; 281: H1675–1689
  • Valiunas V, Weingart R, Brink P R. Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 2000; 86: E42–E49
  • van Veen T A, van Rijen H V, Jongsma H J. Physiology of cardiovascular gap junctions. Adv Cardiol 2006; 42: 18–40
  • Zhou L, Kasperek E M, Nicholson B J. Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels. J Cell Biol 1999; 144: 1033–1045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.