464
Views
0
CrossRef citations to date
0
Altmetric
Reports

Assessment of emissions and exposure in 3D printing workplaces in Taiwan

, , , , , , & show all

References

  • Afshar-Mohajer N, Wu CY, Ladun T, Rajon DA, Huang Y. 2015. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Build Environ. 93:293–301. doi: 10.1016/j.buildenv.2015.07.013.
  • Azimi P, Zhao D, Pouzet C, Crain NE, Stephens B. 2016. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol. 50(3):1260–1268. doi: 10.1021/acs.est.5b04983.
  • Balletti C, Ballarin M, Guerra F. 2017. 3D printing: state of the art and future perspectives. J Cult Herit. 26:172–182. doi: 10.1016/j.culher.2017.02.010.
  • Chan FL, House R, Kudla I, Lipszyc JC, Rajaram N, Tarlo SM. 2018. Health survey of employees regularly using 3D printers. Occup Med (Lond). 68(3):211–214. doi: 10.1093/occmed/kqy042.
  • Chen R, Yin H, Cole IS, Shen S, Zhou X, Wang Y, Tang S. 2020. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: a review. Chemosphere. 259:127452. doi: 10.1016/j.chemosphere.2020.127452.
  • Cristescu SM, Gietema HA, Blanchet L, Kruitwagen CLJJ, Munnik P, Van Klaveren RJ, Lammers JWJ, Buydens L, Harren FJM, Zanen P. 2011. Screening for emphysema via exhaled volatile organic compounds. J Breath Res. 5(4):046009. doi: 10.1088/1752-7155/5/4/046009.
  • Davis AY, Zhang Q, Wong JPS, Weber RJ, Black MS. 2019. Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Build Environ. 160:106209. doi: 10.1016/j.buildenv.2019.106209.
  • Ding S, Ng BF, Shang X, Liu H, Lu X, Wan MP. 2019. The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments. Sci Total Environ. 692:984–994. doi: 10.1016/j.scitotenv.2019.07.257.
  • Du Preez S, Johnson A, LeBouf RF, Linde SJL, Stefaniak AB, Du Plessis J. 2018. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping J. 24(5):865–871. doi: 10.1108/RPJ-03-2017-0050.
  • Dunn KL, Hammond D, Menchaca K, Roth G, Dunn KH. 2020. Reducing ultrafine particulate emission from multiple 3D printers in an office environment using a prototype engineering control. J Nanopart Res. 22(5):112. doi: 10.1007/s11051-020-04844-4.
  • Floyd EL, Wang J, Regens JL. 2017. Fume emissions from a low-cost 3-D printer with various filaments. J Occup Environ Hyg. 14(7):523–533. doi: 10.1080/15459624.2017.1302587.
  • Gu J, Wensing M, Uhde E, Salthammer T. 2019. Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ Int. 123:476–485. doi: 10.1016/j.envint.2018.12.014.
  • Hayes AC, Osio-Norgaard J, Miller S, Whiting GL, Vance ME. 2021. Air pollutant emissions from multi jet fusion, material-jetting, and digital light synthesis commercial 3D printers in a service bureau. Build Environ. 202:108008. doi: 10.1016/j.buildenv.2021.108008.
  • Hegab H, Khanna N, Monib N, Salem A. 2023. Design for sustainable additive manufacturing: a review. Sustain Mater Technol. 35:e00576. doi: 10.1016/j.susmat.2023.e00576.
  • Hinds W, Zhu Y. 2022. Aerosol technology: properties, behavior, and measurement of airborne particles. 3rd ed. New York (NY) Wiley.
  • Jeon H, Park J, Kim S, Park K, Yoon C. 2020. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. Indoor Air. 30(2):306–314. doi: 10.1111/ina.12624.
  • Kwon O, Yoon C, Ham S, Park J, Lee J, Yoo D, Kim Y. 2017. Characterization and control of nanoparticle emission during 3D printing. Environ Sci Technol. 51(18):10357–10368. doi: 10.1021/acs.est.7b01454.
  • Manoj A, Bhuyan M, Banik SR, Ravi Sankar M. 2021. Review on particle emissions during fused deposition modeling of acrylonitrile butadiene styrene and polylactic acid polymers. Mater Today Proc. 44:1375–1383. doi: 10.1016/j.matpr.2020.11.521.
  • Mendes L, Kangas A, Kukko K, Mølgaard B, Säämänen A, Kanerva T, Flores Ituarte I, Huhtiniemi M, Stockmann-Juvala H, Partanen J, et al. 2017. Characterization of emissions from a desktop 3D printer. J Indus Ecol. 21(S1):S94–S106. doi: 10.1111/jiec.12569.
  • Min K, Li Y, Wang D, Chen B, Ma M, Hu L, Liu Q, Jiang G. 2021. 3D printing-induced fine particle and volatile organic compound emission: an emerging health risk. Environ Sci Technol Lett. 8(8):616–625. doi: 10.1021/acs.estlett.1c00311.
  • Mohammadi AA, Zarei A, Majidi S, Ghaderpoury A, Hashempour Y, Saghi MH, Alinejad A, Yousefi M, Hosseingholizadeh N, Ghaderpoori M. 2019. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX. 6:1642–1651. doi: 10.1016/j.mex.2019.07.017.
  • Mokhtar MA, Jayaratne R, Morawska L, Mazaheri M, Surawski N, Buonanno G. 2013. NSAM-derived total surface area versus SMPS-derived “mobility equivalent” surface area for different environmentally relevant aerosols. J Aerosol Sci. 66:1–11. doi: 10.1016/j.jaerosci.2013.08.003.
  • Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, Nandwana P, Chmielus M. 2021. Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 119:100707. doi: 10.1016/j.pmatsci.2020.100707.
  • Nugroho WT, Dong Y, Pramanik A. 2021. Chapter 4: 3D printing composite materials: a comprehensive review. In: Low I-M, Dong Y, editors. Composite materials: manufacturing, properties and applications. p. 65–115. Amsterdam (The Netherlands): Elsevier. doi: 10.1016/B978-0-12-820512-9.00013-7.
  • Oberdörster G. 2000. Toxicology of ultrafine particles: in vivo studies. Philos Trans A Math Phys Eng Sci. 358:2719–2740. doi: 10.1098/rsta.2000.0680.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113(7):823–839. doi: 10.1289/ehp.7339.
  • Pinheiro ND, Freire RT, Conrado JAM, Batista AD, da Silveira Petruci JF. 2021. Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments. Anal Chim Acta. 1143:1–8. doi: 10.1016/j.aca.2020.11.012.
  • Potter PM, Al-Abed SR, Lay D, Lomnicki SM. 2019. VOC emissions and formation mechanisms from carbon nanotube composites during 3D printing. Environ Sci Technol. 53(8):4364–4370. doi: 10.1021/acs.est.9b00765.
  • Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. 2020. Photo-curing 3D printing technique and its challenges. Bioact Mater. 5(1):110–115. doi: 10.1016/j.bioactmat.2019.12.003.
  • Sharma R, Balasubramanian R. 2020. Evaluation of the effectiveness of a portable air cleaner in mitigating indoor human exposure to cooking-derived airborne particles. Environ Res. 183:109192. doi: 10.1016/j.envres.2020.109192.
  • Singh R, Gupta A, Tripathi O, Srivastava S, Singh B, Awasthi A, Rajput SK, Sonia P, Singhal P, Saxena KK. 2020. Powder bed fusion process in additive manufacturing: an overview. Mater Today Proc. 26:3058–3070. doi: 10.1016/j.matpr.2020.02.635.
  • Sioutas C, Delfino RJ, Singh M. 2005. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect. 113(8):947–955. doi: 10.1289/ehp.7939.
  • Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. 2017. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air. 27(2):398–408. doi: 10.1111/ina.12310.
  • Stefaniak AB, Bowers LN, Knepp AK, Luxton TP, Peloquin DM, Baumann EJ, Ham JE, Wells JR, Johnson AR, LeBouf RF, et al. 2019. Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. J Occup Environ Hyg. 16(8):519–531. doi: 10.1080/15459624.2019.1612068.
  • Stefaniak AB, Du Preez S, Du Plessis JL. 2021. Additive manufacturing for occupational hygiene: a comprehensive review of processes, emissions, & exposures. J Toxicol Environ Health B Crit Rev. 24(5):1–50. doi: 10.1080/10937404.2021.1936319.
  • Stefaniak AB, Lebouf RF, Yi J, Ham J, Nurkewicz T, Schwegler-Berry DE, Chen BT, Wells JR, Duling MG, Lawrence RB, et al. 2017. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional printer. J Occup Environ Hyg. 14(7):540–550. doi: 10.1080/15459624.2017.1302589.
  • Steinle P. 2016. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Environ Hyg. 13(2):121–132. doi: 10.1080/15459624.2015.1091957.
  • Stephens B, Azimi P, El Orch Z, Ramos T. 2013. Ultrafine particle emissions from desktop 3D printers. Atmos Environ. 79:334–339. doi: 10.1016/j.atmosenv.2013.06.050.
  • Sze-To GN, Wu CL, Chao CYH, Wan MP, Chan TC. 2012. Exposure and cancer risk toward cooking-generated ultrafine and coarse particles in Hong Kong homes. HVAC&R Res. 18(1-2):204–216. doi: 10.1080/10789669.2011.598443.
  • Tan LJ, Zhu W, Zhou K. 2020. Recent progress on polymer materials for additive manufacturing. Adv Funct Materials. 30(43). doi: 10.1002/adfm.202003062.
  • Tyagi S, Yadav A, Deshmukh S. 2022. Review on mechanical characterization of 3D printed parts created using material jetting process. Mater Today Proc. 51:1012–1016. doi: 10.1016/j.matpr.2021.07.073.
  • Vance ME, Pegues V, Van Montfrans S, Leng W, Marr LC. 2017. Aerosol emissions from fuse-deposition modeling 3d printers in a chamber and in real indoor environments. Environ Sci Technol. 51(17):9516–9523. doi: 10.1021/acs.est.7b01546.
  • Viitanen AK, Kallonen K, Kukko K, Kanerva T, Saukko E, Hussein T, Hämeri K, Säämänen A. 2021. Technical control of nanoparticle emissions from desktop 3D printing. Indoor Air. 31(4):1061–1071. doi: 10.1111/ina.12791.
  • Warheit DB. 2004. Nanoparticles: health impacts? Mater Today. 7(2):32–35. doi: 10.1016/S1369-7021(04)00081-1.
  • Yi J, LeBouf RF, Duling MG, Nurkiewicz T, Chen BT, Schwegler-Berry D, Virji MA, Stefaniak AB. 2016. Emission of particulate matter from a desktop three-dimensional (3D) printer. J Toxicol Environ Health A. 79(11):453–465. doi: 10.1080/15287394.2016.1166467.
  • Youn JS, Seo JW, Han S, Jeon KJ. 2019. Characteristics of nanoparticle formation and hazardous air pollutants emitted by 3D printer operations: from emission to inhalation. RSC Adv. 9(34):19606–19612. doi: 10.1039/c9ra03248g.
  • Yu KP, Yang KR, Chen YC, Gong JY, Chen YP, Shih HC, Lung SC. 2015. Indoor air pollution from gas cooking in five Taiwanese families. Build Environ. 93:258–266. doi: 10.1016/j.buildenv.2015.06.024.
  • Zhang F, Zhu L, Li Z, Wang S, Shi J, Tang W, Li N, Yang J. 2021. The recent development of vat photopolymerization: a review. Addit Manuf. 48:102423. doi: 10.1016/j.addma.2021.102423.
  • Zhang Q, Pardo M, Rudich Y, Kaplan-Ashiri I, Wong JPS, Davis AY, Black MS, Weber RJ. 2019. Chemical composition and toxicity of particles emitted from a consumer-level 3D printer using various materials. Environ Sci Technol. 53(20):12054–12061. doi: 10.1021/acs.est.9b04168.
  • Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. 2023. Metal compositions of particle emissions from material extrusion 3D printing: emission sources and indoor exposure modeling. Sci Total Environ. 860:160512. doi: 10.1016/j.scitotenv.2022.160512.
  • Zhang Q, Wong JPS, Davis AY, Black MS, Weber RJ. 2017. Characterization of particle emissions from consumer fused deposition modeling 3D printers. Aerosol Sci Technol. 51(11):1275–1286. doi: 10.1080/02786826.2017.1342029.
  • Zisook RE, Simmons BD, Vater M, Perez A, Donovan EP, Paustenbach DJ, Cyrs WD. 2020. Emissions associated with operations of four different additive manufacturing or 3D printing technologies. J Occup Environ Hyg. 17(10):464–479. doi: 10.1080/15459624.2020.1798012.
  • Zontek TL, Ogle BR, Jankovic JT, Hollenbeck SM. 2017. An exposure assessment of desktop 3D printing. J Chem Health Saf. 24(2):15–25. doi: 10.1016/j.jchas.2016.05.008.