Publication Cover
LEUKOS
The Journal of the Illuminating Engineering Society
Volume 20, 2024 - Issue 1
986
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimizing Presence Sensing Lighting for Energy Efficiency and User Behavioral Needs in Small Swedish Homes

ORCID Icon, ORCID Icon & ORCID Icon
Pages 107-125 | Received 01 Sep 2022, Accepted 28 Mar 2023, Published online: 30 May 2023

References

  • Acconeer. 2019. Acconeer Pulsed Coherent Radar (PCR) Module (XM112-XB112). Acconeer. https://docs.acconeer.com/en/latest/sensor_introduction.html#welcome
  • Acuity Brands. 2017. Occupancy sensor technologies: microphonics vs. ultrasonic [White Paper]. Acuity control sens switch. https://www.acuitybrands.com/-/media/Files/Acuity/Brands/Controls/SensorSwitch/occupancy.sensor.technologies.whitepaper.pdf
  • Adib F, Mao H, Kabelac Z, Katabi D, Miller RC. 2015. Smart homes that monitor breathing and heart rate. In: Proc 33rd Annual ACM Conf Hum Factors Comput Syst (CHI ’15). New York (NY, USA): Association for Computing Machinery (ACM). p. 837–846.
  • Ahmad MW, Mourshed M, Mundow D, Sisinni M, Rezgui Y. 2016. Building energy metering and environmental monitoring – a state-of-the-art review and directions for future research. Energy Build. 120:85–102. doi:10.1016/j.enbuild.2016.03.059.
  • Aldubyan M, Krarti M. 2022. Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study. Energy. 238:121637. doi:10.1016/j.energy.2021.121637.
  • Attia S, Hamdy M, Ezzeldin S. 2017. Twenty-year tracking of lighting savings and power density in the residential sector. Energy Build. 154:113–126. doi:10.1016/j.enbuild.2017.08.041.
  • Bachouch RB, Fousseret Y, Parmantier Y. 2023. Optimal sensor placement in smart home using building information modeling: a home support application. Innov Res Biomed Eng. 44(3):100745. doi:10.1016/j.irbm.2022.100745.
  • Balvedi BF, Ghisi E, Lamberts R. 2018. A review of occupant behaviour in residential buildings. Energy Build. 174:495–505. doi:10.1016/j.enbuild.2018.06.049.
  • Benezeth Y, Laurent H, Emile B, Rosenberger C. 2011. Towards a sensor for detecting human presence and characterizing activity. Energy Build. 43(2–3):305–314. doi:10.1016/j.enbuild.2010.09.014.
  • Bergefurt L, Weijs-Perrée M, Appel-Meulenbroek R, Arentze T, de Kort Y. 2022. Satisfaction with activity-support and physical home-workspace characteristics in relation to mental health during the COVID-19 pandemic. J Environ Psychol. 81:101826. doi:10.1016/j.jenvp.2022.101826.
  • Bladh M, Krantz H. 2008. Towards a bright future? Household use of electric light: a microlevel study. Energy Policy. 36(9):3521–3530. doi:10.1016/j.enpol.2008.06.001.
  • Chu Y, Mitra D, Cetin K, Lajnef N, Altay F, Velipasalar S. 2022. Development and testing of a performance evaluation methodology to assess the reliability of occupancy sensor systems in residential buildings. Energy Build. 268:112148. doi:10.1016/j.enbuild.2022.112148.
  • Covarrubias GDS. 2016. Anticipatory lighting control systems. Eindhoven (Netherlands): Eindhoven University of technology (TU/e).
  • Crawford RH, Stephan A. 2020. Tiny house, tiny footprint? The potential for tiny houses to reduce residential greenhouse gas emissions. IOP Conf Series. 588, No. 2. Gothenburg (Sweden): IOP Publishing. p. 022073.
  • de Souza DF, da Silva PPF, Fontenele LFA, Barbosa GD, de Oliveira Jesus M. 2019. Efficiency, quality, and environmental impacts: a comparative study of residential artificial lighting. Energy Rep. 5:409–424. doi:10.1016/j.egyr.2019.03.009.
  • Debes C, Merentitis A, Sukhanov S, Niessen M, Frangiadakis N, Bauer A. 2016. Monitoring activities of daily living in smart homes: understanding human behavior. IEEE Signal Process Mag. 33(2):81–94. doi:10.1109/MSP.2015.2503881.
  • Dikel EE, Li YE, Vuotari M, Mancini S. 2019. Evaluating the standby power consumption of smart LED bulbs. Energy Build. 186:71–79. doi:10.1016/j.enbuild.2019.01.019.
  • Dikel EE, Newsham GR, Xue H, Valdés JJ. 2018. Potential energy savings from high-resolution sensor controls for LED lighting. Energy Build. 158:43–53. doi:10.1016/j.enbuild.2017.09.048.
  • Dong B, Kjærgaard MB, De Simone M, Gunay HB, O’Brien W, Mora D, Dziedzic J, Zhao J. 2018. Sensing and data acquisition. In: Wagner A, O’Brien W, Dong B, editors. Explor Occupant Behav Build Methods Challenges. Cham (Switzerland): Springer International Publishing. p. 77–106.
  • Energimyndigheten. 2011. The Swedish Energy Agency’s guide to the new light. Stockholm. http://www.energimyndigheten.se/globalassets/webb-en/belysning_engelska.pdf
  • Enongene KE, Murray P, Holland J, Abanda FH. 2017. Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon. Renew Sustain Energy Rev. 78(April):731–742. doi:10.1016/j.rser.2017.04.068.
  • Extronic Elektronik AB. För belysningskonsulter och installatörer. Extronic Elektron AB. www.extronic.se
  • Fioranelli F, Le Kernec J, Shah SA. 2019. Radar for health care: recognizing human activities and monitoring vital signs. IEEE Potentials. 38(4):16–23. doi:10.1109/MPOT.2019.2906977.
  • Garcia M, Lau EK, Lovald ST, Chang E. 2019. Ultrasound in consumer products: perception and safety assessment. In: Thought Leadersh. San Francisco (USA): Exponent. p. 1–2.
  • Gerhardsson KM, Laike T, Johansson M. 2019. Residents’ lamp purchasing behaviour, indoor lighting characteristics and choices in Swedish homes. Indoor Built Environ. 28(7):964–983. doi:10.1177/1420326X18808338.
  • Gerhardsson KM, Laike T, Johansson M. 2021. Leaving lights on – a conscious choice or wasted light? Use of indoor lighting in Swedish homes. Indoor Built Environ. 30(6):745–762. doi:10.1177/1420326X20908644.
  • Guo H, Zhang N, Shi W, AlQarni S, Wu S, Wang H 2019. Real-time indoor 3D human imaging based on MIMO radar sensing. In: 2019 IEEE Int Conf Multimed Expo. Shanghai (China): IEEE. p. 1408–1413.
  • Hayat H, Griffiths T, Brennan D, Lewis RP, Barclay M, Weirman C, Philip B, Searle JR. 2019. The state-of-the-art of sensors and environmental monitoring technologies in buildings. Sensors. 19(17):3648. doi:10.3390/s19173648.
  • Houser KW. 2022. To measure is to know … or not. LEUKOS. 18(2):103. doi:10.1080/15502724.2022.2029086.
  • Hussain Z, Sheng QZ, Zhang WE. 2020. A review and categorization of techniques on device-free human activity recognition. J Netw Comput Appl. 167:102738. doi:10.1016/j.jnca.2020.102738.
  • Ihara I. 2008. Ultrasonic sensing: fundamentals and its applications to nondestructive evaluation. In: Mukhopadhyay S, Huang R, editors. Sensors. Vol. 21. Berlin (Heidelberg): Springer. p. 287–305.
  • Javaid M, Haleem A, Rab S, Pratap Singh R, Suman R. 2021. Sensors for daily life: a review. Sensors Int. 2:100121. doi:10.1016/j.sintl.2021.100121.
  • Kalyanaraman A, Soltanaghaei E, Whitehouse K 2019. Doorpler: a radar-based system for real-time, low power zone occupancy sensing. In: 2019 IEEE Real-Time Embed Technol Appl Symp. Montreal (QC, Canada): IEEE. p. 42–53.
  • Kawka E, Cetin K. 2021. Impacts of COVID-19 on residential building energy use and performance. Build Environ. 205:108200. doi:10.1016/j.buildenv.2021.108200.
  • Lucas J. 2019. What are microwaves? Live Sci. https://www.livescience.com/50259-microwaves.html
  • McLean G, Osei-Frimpong K. 2019. Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput Human Behav. 99:28–37. doi:10.1016/j.chb.2019.05.009.
  • Moadab NH, Olsson T, Fischl G, Aries MBC. 2021. Smart versus conventional lighting in apartments - electric lighting energy consumption simulation for three different households. Energy Build. 244:111009. doi:10.1016/j.enbuild.2021.111009.
  • Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. 2018. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. In: Payne H, Koch S, Tantia, J, Fuchs, T, editors. BMC Med Res Methodol. Vol. 18. p. 143.
  • Navarro RC, Ruiz AR, Molina FJV, Romero MJS, Chaparro JD, Alises DV, Lopez JCL. 2022. Indoor occupancy estimation for smart utilities: a novel approach based on depth sensors. Build Environ. 222:109406.
  • Nguyen TA, Aiello M. 2013. Energy intelligent buildings based on user activity: a survey. Energy Build. 56:244–257. doi:10.1016/j.enbuild.2012.09.005.
  • Onaygil S, Erkin E 2018. Smart lighting solutions for residences using IoT infrastructure: advantages, disadvantages and effects on energy saving. In: 2018 Seventh Balk Conf Light. Varna (Bulgaria): IEEE. p. 1–5.
  • Palacios-Garcia EJ, Chen A, Santiago I, Bellido-Outeiriño FJ, Flores-Arias JM, Moreno-Munoz A. 2015. Stochastic model for lighting’s electricity consumption in the residential sector: impact of energy saving actions. Energy Build. 89:245–259. doi:10.1016/j.enbuild.2014.12.028.
  • Pandharipande A, Caicedo D. 2015. Smart indoor lighting systems with luminaire-based sensing: a review of lighting control approaches. Energy Build. 104:369–377. doi:10.1016/j.enbuild.2015.07.035.
  • Pandharipande A, Newsham GR. 2018. Lighting controls: evolution and revolution. Light Res Technol. 50(1):115–128. doi:10.1177/1477153517731909.
  • Pompei L, Blaso L, Fumagalli S, Bisegna F. 2022. The impact of key parameters on the energy requirements for artificial lighting in Italian buildings based on standard EN 15193-1:2017. Energy Build. 263:112025. doi:10.1016/j.enbuild.2022.112025.
  • Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist. 2021. PRISMA. http://prisma-statement.org/Extensions/ScopingReviews
  • Reinoso O, Payá L. 2020. Special issue on visual sensors. Sensors. 20(3):910. doi:10.3390/s20030910.
  • Safranek S, Wilkerson A, Irvin L, Casey C. 2021. Using occupant interaction with advanced lighting systems to understand opportunities for energy optimization: control data from a hospital NICU. Energy Build. 251:111357. doi:10.1016/j.enbuild.2021.111357.
  • Santra A, Ulaganathan RV, Finke T. 2018. Short-range millimetric-wave radar system for occupancy sensing application. IEEE Sensors Lett. 2(3):1–4. doi:10.1109/LSENS.2018.2852263.
  • Sciuto A, Saini A, Forlizzi J, Hong JI. 2018. “Hey Alexa, what’s up?”: a mixed-methods studies of in-home conversational agent usage. In: Proceedings of the 2018 Designing Interactive Systems Conference. New York (NY, USA): Association for Computing Machinery (ACM). p. 857–868.
  • Shukri S, Kamarudin LM. 2017. Device free localization technology for human detection and counting with RF sensor networks: a review. J Netw Comput Appl. 97:157–174. doi:10.1016/j.jnca.2017.08.014.
  • Soheilian M, Moadab NH, Fischl G, Aries MBC. 2019. Comparison of simulated energy consumption by smart and conventional lighting systems in a residential setting. J Phys Conf Ser. 1343(1):012155. doi:10.1088/1742-6596/1343/1/012155.
  • Statistics Sweden. 2021a. Electricity in Sweden. Stat Sweden. https://www.statista.com/statistics/1027084/consumption-of-electricity-in-sweden-by-user/
  • Statistics Sweden. 2021b. Households’ housing 2020: smallest living space per person in cities. Stat Sweden. https://www.scb.se/en/finding-statistics/statistics-by-subject-area/household-finances/income-and-income-distribution/households-housing/pong/statistical-news/households-housing-2020/
  • Thorström M, Anderson G. 2020. Presence detectors and remote heartbeat sensing using radar technology. Lund (Sweden): Lund University.
  • Ticleanu C. 2021. Impacts of home lighting on human health. Light Res Technol. 53(5):453–475. doi:10.1177/14771535211021064.
  • Tiller D, Guo X, Henze G, Waters C. 2010. Validating the application of occupancy sensor networks for lighting control. Light Res Technol. 42(4):399–414. doi:10.1177/1477153510375524.
  • Tleuken A, Turkyilmaz A, Sovetbek M, Durdyev S, Guney M, Tokazhanov G, Wiechetek L, Pastuszak Z, Draghici A, Boatca ME, et al. 2022. Effects of the residential built environment on remote work productivity and satisfaction during COVID-19 lockdowns: an analysis of workers’ perceptions. Build Environ. 219:109234. doi:10.1016/j.buildenv.2022.109234.
  • Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, et al. 2018. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 169(7):467–473. doi:10.7326/M18-0850.
  • van Eck NJ, Waltman L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84(2):523–538. doi:10.1007/s11192-009-0146-3.
  • Williams A, Atkinson B, Garbesi K, Page E, Rubinstein F. 2012. Lighting controls in commercial buildings. LEUKOS. 8(3):161–180. doi:10.1582/LEUKOS.2012.08.03.001.
  • Wilson L. 2022. How big is a house? Average house size by country - 2022. Shrink That Footpr. https://shrinkthatfootprint.com/how-big-is-a-house/
  • Woodstock T-KAE. 2020. Multisensor fusion for occupancy detection and activity recognition in a smart room. Troy (New York): Rensselaer Polytechnic Institute.
  • Wotton J, Skates H, Shutter L. 2018. Tiny house – when size matters. Aust Plan. 55(3–4):209–220. doi:10.1080/07293682.2019.1634112.
  • Wu L, Wang Y. 2021. Stationary and moving occupancy detection using the SLEEPIR sensor module and machine learning. IEEE Sens J. 21(13):14701–14708. doi:10.1109/JSEN.2021.3071402.
  • Yavari E, Lee A, Pang K, Mccabe NA, Boric-Lubecke O 2014a. Radar and conventional occupancy sensors performance comparison. In: 2014 Asia-Pacific Microw Conf.; Sendai, Japan. p. 444–446.
  • Yavari E, Song C, Lubecke V, Boric-Lubecke O. 2014b. Is there anybody in there? IEEE Microw Mag. 15(2):57–64. doi:10.1109/MMM.2013.2296210.
  • Zhang Y, Bai X, Mills FP, Pezzey JCV. 2018. Rethinking the role of occupant behavior in building energy performance: a review. Energy Build. 172:279–294. doi:10.1016/j.enbuild.2018.05.017.