21
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Molecular Genetics of Holoprosencephaly

, &
Pages 1-19 | Published online: 16 Apr 2010

References

  • DeMyer W E, Zeman W. Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate: clinical, electroencephalographic and nosologic considerations. Confin Neurol (Basel) 1963; 23: 1–36
  • Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383: 407–413
  • Golden J A, Bracilovic A, McFadden K A, Beesley J S, Rubenstein J LR, Grinspan J B. Ectopic bone morphogenetic proteins 5 and 4 in the chick forebrain lead to cyclopia and holoprosencephaly. Proc Natl Acad Sci 1999; 96: 2439–2444
  • O'Rahilly R, Muller F. Interpretation of some median anomalies as illustrated by cyclopia and symmelia. Teratology 1989; 40: 409–420
  • Golden J A. Holoprosencephaly: a defect in brain patterning. J Neuropath Experim Neurol 1998; 57: 991–999
  • DeMyer W, Zeman W, Palmer C G. The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly). Pediatrics 1964; 34: 256–263
  • Cohen M M. Perspectives on holoprosencephaly: Part III. Spectra, distinctions, continuities, and discontinuities. Am J Med Genet 1989; 34: 271–288
  • Muenke M. Holoprosencephaly as a genetic model for normal craniofacial development. Dev Biol 1994; 5: 293–301
  • Cohen M M. Perspectives on holoprosencephaly: Part I. Epidermiology, genetics, and syndromology. Teratology 1989; 40: 211–235
  • Nanni L, Ming J E, Bocian M, Steinhaus K, Bianchi D W, Die-Smulders C, Giannotti A, Imaizumi K, Jones K L, Campo M D, Martin R A, Meinecke P, Pierpont M EM, Robin N H, Young I D, Roessler E, Muenke M. The mutational spectrum of the Sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 1999; 8: 2479–2488
  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer S W, Tsui L -C, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14: 357–360
  • Matsunaga E, Shiota K. Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology 1977; 16: 261–272
  • Roach E, DeMyer W, Conneally P M, Palmer C, Merritt A D. Holoprosencephaly : birth data, genetic and demographic analysis of 30 families. Birth Defects: Orig Art Ser 1975; 11: 294–313
  • Croen L A, Shaw G M, Lammer E J. Holoprosencephaly: Epidemiologic and clinical characteristics of a California population. Am J Med Genet 1996; 64: 465–472
  • Muenke M, Gurrieri F, Bay C, Yi D H, Collins A L, Johnson V P, Hennekam R CM, Schaefer G B, Weik L, Lubinski M S, Daack-Hirsch S, Moore C A, Dobyns W B, Murray J C, Price R A. Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc Natl Acad Sci 1994; 91: 8102–8106
  • Muenke M. Clinical, cytogenetic, and molecular approaches to the genetic heterogeneity of holoprosencephaly. Am J Med Genet 1989; 34: 237–245
  • Cohen M MJ, Sulik K K. Perspectives on holoprosencephaly. Part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. J Craniofac Genet Dev Biol 1992; 12: 196–244
  • Barr M, Hanson J W, Currey K, Sharp S, Toriello H, Schmickel R D, Wilson G N. Holoprosencephaly in infants of diabetic mothers. J Peds 1983; 102: 565–568
  • Smith D W, Lemli L, Optiz J M. A newly recognized syndrome of multiple congenital anomalies. J Pediatr 1964; 64: 210–217
  • Opitz J. RSHPSLO (‘Smith-Lemli-Opitz’) syndrome: historical, genetic, and developmental considerations. Am J Med Genet 1994; 50: 344–346
  • Waterham H R, Wijburg F A, Hennekam R C, Vreken P, Poll-The B T, Dorland L, Duran M, Jira P E, Smeitink J A, Wevers R A, Wanders R J. Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene. Am J Hum Genet 1998; 63: 329–338
  • Wassif C A, Maslen C, Kachilele-Linjewile S, Lin D, Linck L M, Connor W E, Steiner R D, Porter F D. Mutations in the human sterol delta7-reductase gene at 1 1q12–13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 1998; 63: 55–62
  • Fitzky B U, Witsch-Baumgartner M, Erdel M, Lee J N, Paik Y K, Glossmann H, Utermann G, Moebius F F. Mutations in the delta7-sterol reductase gene in patients with the Smith-Lemli-Opitz syndrome. Proc Natl Acad Sci USA 1998; 95: 8181–8186
  • Ronen G M, Andrews W L. Holoprosencephaly as a possible embryonic alcohol effect. Am J Med Genet 1991; 40: 151–154
  • Sulik K K, Dehart D B, Rogers J M, Chernoff N. Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 1995; 51: 398–403
  • Olsen C L, Hughes J P, Youngblood L G, Sharpe-Stimac M. The epidemiology of holoprosencephaly and phenotypic characteristics of affected children: New York State, 1984–1989. Am J Med Genet 1997; 73: 217–226
  • Belloni E, Muenke M, Roessler E, Traverso G, Siegel-Bartelt J, Frumkin A, Mitchell H F, Donis-Keller H, Helms C, Hing A V, Heng H HQ, Koop B, Martindale D, Rommens J M, Tsui L -C, Scherer S W. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 1996; 14: 353–356
  • Brown S A, Warburton D, Brown L Y, Yu C -Y, Roeder E R, Stengel-Rutkowski S, Hennekam R CM, Muenke M. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet 1998; 20: 180–183
  • Wallis D E, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai E H, Rommens J, Muenke M. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 1999; 22: 196–198
  • Wallis D E, Muenke M. Molecular mechanisms of holoprosencephaly. Mol Genet Metab 68, 1999; 68: 126–138
  • Roessler E, Muenke M. Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inher Metab Dis 1998; 21: 481–497
  • Frézal J, Schinzel A. Report of the committee on clinical disorders, chromosome aberrations and uniparental disomy. Human Gene Mapping 11. Cytogenet Cell Genet 1991; 58: 986–1052
  • Gurrieri F, Trask B J, Engh Gvd, Krauss C M, Schinzel A, Pettenati M J, Schindler D, Dietz-Band J, Vergnaud G, Scherer S W, Tsui L -C, Muenke M. Physical mapping of the holoprosencephaly minimal critical region on chromosome 7q36. Nat Genet 1993; 3: 247–251
  • Roessler E, Ward D E, Gaudenz K, Belloni E, Scherer S W, Donnai D, Siegel-Bartelt J, Tsui L -C, Muenke M. Cytogenetic rearrangements involving the loss of the Sonic Hedgehog gene at 7q36 cause holoprosencephaly. Hum Genet 1997; 100: 172–181
  • Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287: 795–801
  • Ming J E, Roessler E, Muenke M. Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 1998; 8: 343–349
  • Ericson J, Muhr J, Placzek M, Lints T, Jessell T, Edlund T. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 1995; 75: 1417–1430
  • Ekker S C, Ungar A R, Greenstein P, Kessler D Pv, Porter J A, Moon R T, Beachy P A. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol 1995; 5: 944–955
  • Huang Z, Krauss S. Hedgehog transmitted along retinal axons triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 1996; 86: 411–422
  • Helms J A, Kim C H, Hu D, Minkoff R, Thaller C, Eichele G. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 1997; 187: 25–35
  • Echelard Y, Epstein D, St Jacques B, Shen L, Moher J, McMahon J, McMahon A. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 74: 1417–1430
  • Roelink H, Porter J, Chiang C, Tanabe Y, Chang D, Beachy P, Jessell T. Floor plate and motor neuron induction by different concentrations of the amino terminal cleavage product of Sonic Hedgehog proteolysis. Cell 1995; 81: 445–455
  • Hammerschmidt M, Brook A, McMahon A P. The world according to hedgehog. Trends Genet 1997; 13: 14–21
  • Roessler E, Belloni E, Gaudenz K, Vargas F, Scherer S W, Tsui L -C, Muenke M. Mutations in the C-terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum Mol Genet 1997; 6: 1847–1853
  • Brown S, Jackey P E, Lien J M, Warburton D. A small deletion in the putative ‘critical region’ in chromosome 13q32 in a fetus with isolated holoprosencephaly. Am J Hum Genet 1995; 57(supplement)606
  • Nagai T, Aruga J, Takada S, Gunther T, Sporle R, Schughart K, Mikoshiba K. The expression of the mouse Zicl, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 1997; 182: 299–313
  • Brewster R, Lee J, Ruiz I, Altaba A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 1998; 393: 579–583
  • Aruga J, Nagai T, Tokuyama T, Hayashizaki Y, Okazaki Y, Chapman V M, Mikoshiba K. The mouse Zic Gene family: Homologues of the Drosophila pair-rule gene odd-paired. J Biol Chem 1996; 271: 1043–1047
  • Benedyk M J, Mullen J R, DiNardo S. odd-paired: a zinc finger pair-rule protein required for the timely activation of engrailed and wingless in Drosophila embryos. Gen Dev 1994; 8: 105–117
  • Schell U, Wienberg J, Kohler A, Bray-Ward P, Ward D E, Wilson W G, Allen W P, Lebel R R, Sawyer J R, Campbell P L, Aughton D J, Punnett H H, Lammer E J, Kao F -T, Ward D C, Muenke M. Molecular characterization of breakpoints in patients with holoprosencephaly and definition of the HPE2 critical region 2p21. Hum Mol Genet 1996; 5: 223–229
  • Cheyette B NR, Green P J, Martin K, Garren H, Hartenstein V, Zipursky S L. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 1994; 12: 977–996
  • Oliver G, Loosli F, Koster R, Wittbrodt J, Gruss P. Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mech Dev 1996; 60: 233–239
  • Kobayashi M, Toyama R, Takada H, Dawid I B, Kawakami K. Overexpression of the forebrain-specific homeobox gene Six3 induces rostral forebrain enlargement in zebrafish. Development 1998; 125: 2973–2982
  • Loosli F, Winkler S, Wittbrodt J. Six3 overexpression initiates the formation of ectopic retina. Gen Dev 1999; 13: 649–654
  • Kawakami K, Ohto H, Takizawa T, Saito T. Identification and expression of six family genes in mouse retina. FEBS Letters 1996; 393: 259–263
  • Overhauser J, Mitchell H F, Zackai E H, Tick D B, Rojas K, Muenke M. Physical mapping of the holoprosencephaly critical region in 18pl 1.3. Am J Hum Genet 1995; 57: 1080–1085
  • Bertolino E, Wildt S, Richards G, Clerc R G. Expression of a novel murine homeobox gene in the developing cerebellar granual laver during its proliferation. Dev Dyn 1996; 205: 410–420
  • Bertolino E, Reimund B, Wildt-Perinic D, Clerc R G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 1995; 270: 31178–31188
  • Lammer E, Chen D, Hoar R, Agnish N, Benke P, Braun J, Curry C, Fernhoff P, Grix A, Lott I, Richards J, Sun S. Retinoic acid embryopathy. New Engl J Med 1985; 313: 837–841
  • Gripp K W, Wotton D, Edwards M C, Roessler E, Aoles L, Meinecke P, Richieri-Coste A, Zackai E H, Massagué J, Muenke M, Elledge S J. Mutations in TGIF cause holoprosencepholy and link Nodal signaling to human neurslaxis determination. Nat Genet 2000, (in press).
  • Lemaire P, Kodjabachian L. The vertebrate organizer: structure and molecules. Trends Genet 1996; 12: 525–530
  • Marigo V, Davey R A, Zuo Y, Cunningham J M, Tabin C J. Biochemical evidence that patched in the hedgehog receptor. Nature 1996; 384: 176–179
  • Ming J E, Kaupas M E, Roessler E, Brunner H G, Nance W E, Stratton R F, Sujansky E, Bale S J, Muenke M. Mutations of PATCHED in holoprosencephaly. Am J Hum Genet 1998; 63: A27, (abstract).
  • Alexandre C, Jacinto A, Ingham P W. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the Cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Gen Dev 1996; 10: 2003–2013
  • Lee J, Platt K A, Censullo P, Ruiz I, Altaba A. Glil is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124: 2537–2552
  • Hynes M, Stone D M, Dowd M, Pitts-Meek S, Goddard A, Gurney A, Rosenthal A. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 1997; 19: 15–26
  • Hardcastle Z, Mo R, Hui C -c, Sharpe P T. The Shh pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 1998; 125: 2803–2811
  • Ikeya M, Lee S M, Johnson J E, McMahon A P, Takada S. Wnt signaling required for expansion of neural crest and CNS progenitors. Nature 1997; 389: 966–970
  • Furuta Y, Piston D W, Hogan B LM. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997; 124: 2203–2212
  • Lee J J, Ekker S C, Kessler D Pv, Porter J A, Sun B I, Beachy P A. Autoproteolysis in hedgehog protein biogenesis. Science 1994; 266: 1528–1537
  • Porter J A, Ekker S C, Park W -J, Kessler D Pv, Young K E, Chen C -H, Ma Y, Woods A S, Cotter R J, Koonin E V, Beachy P A. Hedgehog patterning activity: role of lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 1996; 86: 21–34
  • Porter J A, Young K E, Beachy P A. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996; 274: 255–259
  • Kelley R I, Roessler E, Hennekam R CM, Feldman G L, Kosaki K, Jones M C, Palumbos J C, Muenke M. Holoprosencephaly in RSH/Smith-Lemli-Opitz Syndrome : Does abnormal cholesterol metabolism affect the function of Sonic Hedgehog? Am J Med Genet 1996; 66: 478–484
  • Reppeto M, Maziere J C, Citadelle D, Dupuis R, Meier M, Biade S, Quiec D, Roux C. Teratogenic effect of the cholesterol synthesis inhibitor AY 9944 on rat embryos in vitro. Teratology 1990; 611–618
  • Lanoue L, Dehart D B, Hinsdale M E, Maeda N, Tint G S, Sulik K K. Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: Further evidence for a link to Sonic Hedgehog. Am J Med Genet 1997; 73: 24–31
  • Willnow T E, Hilpert J, Armstrong S A, Rohlmann A, Hammer R E, Burns D K, Herz J. Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci 1996; 93: 8460–8464
  • Massague J. TGF-b signal transduction. Ann Rev Biochem 1998; 67: 753–791
  • Feldman B, Gates M A, Egan E S, Dougan S T, Rennebeck G, Sirotkin H I, Schier A F, Talbot W S. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 1998; 395: 181–185
  • Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot W S, Schier A F. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 1999; 97: 121–132
  • Conlon F L, Lyons K M, Takaesu N, Barth K S, Kispert A, Herrmann B, Robertson E J. A primary requirement for nodal in the formation and maintanance of the primitive streak in the mouse. Development 1994; 120: 1919–1928
  • Wotton D, Lo R S, Lee S, Massagué J. A Smad transcriptional corepressor. Cell 1999; 97: 29–39
  • Muenke M, Page D C, Brown L G, Armson B A, Zackai E H, Mennuti M T, Emanuel B S. Molecular detection of a Yp/18 translocation in a 45, X holoprosencephalic male. Hum Genet 1988; 80: 219–223
  • Muenke M, Beachy P A. Holoprosencephaly. Chapter. “The Metabolic and Molecular Bases of Inherited Disease”, Eighth Edition, Scriver, et al, 2000, (in press)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.