32
Views
27
CrossRef citations to date
0
Altmetric
Original Article

Role of Surfactant Protein a (SP-A)/Lipid Interactions for SP-A Functions in the Lung

Pages 249-268 | Published online: 16 Apr 2010

References

  • Hansen S, Holmskov U. Structural aspects of collectins and receptors for collectins. Immunobiology 1998; 199: 165–189
  • Reid K B. Functional roles of the lung surfactant proteins SP-A and SP-D in innate immunity. Immunobiology 1998; 199: 200–207
  • Kuroki Y, Sano H. Functional roles and structural analysis of lung collectins SP-A and SP-D. Biol Neonate 1999; 1: 19–21
  • Voorhout W F, Veenendaal T, Haagsman H P, Verkleij A J, van Golde L M, Geuze H J. Surfactant protein A is localized at the corners of the pulmonary tubular myelin lattice. J Histochem Cytochem 1991; 39: 1331–1336
  • Kuroki Y, Shiratori M, Ogasawara Y, Tsuzuki A, Akino T. Characterization of pulmonary surfactant protein D: its copurification with lipids. Biochim Biophys Acta 1991; 1086: 185–190
  • McCormack F X. Structure, processing and properties of surfactant protein A. Biochim Biophys Acta 1998; 19: 2–3
  • McCormack F X, Damodarasamy M, Elhalwagi B M. Deletion mapping of N-terminal domains of surfactant protein A. The N-terminal segment is required for phospholipid aggregation and specific inhibition of surfactant secretion. J Biol Chem 1999; 274: 3173–3181
  • Palaniyar N, Ridsdale R A, Holterman C E, Inchley K, Possmayer F, Harauz G. Structural changes of surfactant protein A induced by cations reorient the protein on lipid bilayers. J Struct Biol 1998; 122: 297–310
  • Ogasawara Y, Kuroki Y, Akino T. Pulmonary surfactant protein D specifically binds to phosphatidylinositol. J Biol Chem 1992; 267: 21244–21249
  • Persson A V, Gibbons B J, Shoemaker J D, Moxley M A, Longmore W J. The major glycolipid recognized by SP-D in surfactant is phosphatidylinositol. Biochemistry 1992; 31: 12183–12189
  • Kuroki Y, Honma T, Chiba H, et al. A novel type of binding specificity to phospholipids for rat mannose-binding proteins isolated from serum and liver. FEBS Lett 1997; 414: 387–392
  • Kilpatrick D C. Phospholipid-binding activity of human mannan-binding lectin. Immunol Lett 1998; 61: 191–195
  • McEachren T M, Keough K M. Phosphocholine reverses inhibition of pulmonary surfactant adsorption caused by C-reactive protein. Am J Physiol 1995; 269: L492–L497
  • Casals C, Varela A, Ruano M L, et al. Increase of C-reactive protein and decrease of surfactant protein A in surfactant after lung transplantation. Am J Respir Crit Care Med 1998; 157: 43–49
  • Efrati H, Hawgood S, Williams M C, Hong K, Benson B J. Divalent cation and hydrogen ion effects on the structure and surface activity of pulmonary surfactant. Biochemistry 1987; 26: 7986–7993
  • Ruano M L, Perez Gil J, Casals C. Effect of acidic pH on the structure and lipid binding properties of porcine surfactant protein A. Potential role of acidification along its exocytic pathway. J Biol Chem 1998; 273: 15183–15191
  • King R J, Carmichael M C, Horowitz P M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem 1983; 258: 10672–10680
  • Hawgood S, Benson B J, Hamilton R LJ. Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry 1985; 24: 184–190
  • Casals C, Miguel E, Pérez-Gil J. Tryptophan fluorescence study on the interaction of pulmonary surfactant protein A with phospholipid vesicles. Biochem J 1993; 296: 585–593
  • Casals C, Ruano M L, Miguel E, Sanchez P, Perez Gil J. Surfactant protein-C enhances lipid aggregation activity of surfactant protein-A. Biochem Soc Trans 1994; 22: 0300–5127
  • Ruano M L, Miguel E, Perez Gil J, Casals C. Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A. Biochem J 1996; 313: 683–689
  • Cajal Y, Dodia C, Fisher A B, Jain M K. Calcium-triggered selective inter-membrane exchange of phospholipids by the lung surfactant protein SP-A. Biochemistry 1998; 37: 12178–12188
  • Hawgood S, Benson B J, Schilling J, Damm D, Clements J A, White R T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 1987; 84: 66–70
  • Schürch S, Possmayer F, Cheng S, Cockshutt A M. Pulmonary SP-A enhances adsorption and appears to induce surface sorting of lipid extract surfactant. Am J Physiol 1992; 263: L210–218
  • Ruano M L, Nag K, Worthman L A, Casals C, Perez Gil J, Keough K M. Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidyl-choline/dipalmitoylphosphatidylglycerol. Biophys J 1998; 74: 1101–1109
  • Ruano M L, Nag K, Casals C, Perez Gil J, Keough K M. Interactions of pulmonary surfactant protein A with phospholipid monolayers change with pH. Biophys J 1999; 77: 1469–1476
  • Poulain F R, Allen L, Williams M C, Hamilton R L, Hawgood S. Effects of surfactant apolipoproteins on liposome structure: implications for tubular myelin formation. Am J Physiol 1992; 262: L730–L739
  • Suzuki Y, Fujita Y, Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis 1989; 140: 75–81
  • Williams M C, Hawgood S, Hamilton R L. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Am J Respir Cell Mol Biol 1991; 5: 41–50
  • Veldhuizen R AW, Yao L J, Hearn S A, Possmayer F, Lewis J F. Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling. Biochem J 1996; 313: 835–840
  • Cockshutt A M, Weitz J, Possmayer F. Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 1990; 29: 8424–8429
  • Tsuzuki A, Kuroki Y, Akino T. Pulmonary surfactant protein A-mediated uptake of phosphatidylcholine by alveolar type II cells. Am J Physiol 1993; 265: L193–L199
  • van Iwaarden J F, Pikaar J C, Storm J, et al. Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem J 1994; 303: 407–411
  • Sano H, Sohma H, Muta T, Nomura S, Voelker D R, Kuroki Y. Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 1999; 163: 387–395
  • Pikaar J C, Voorhout W F, van Golde L MG, Verhoef J, Van Strijp J A, van Iwaarden J F. Opsonic activities of surfactant proteins A and D in phagocytosis of gram-negative bacteria by alveolar macrophages. J Infect Dis 1995; 172: 481–489
  • Sidobre S, Nigou J, Puzo G, Riviere M. Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. J Biol Chem 2000; 275: 2415–2422
  • Korfhagen T R, Bruno M D, Ross G F, et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci U S A 1996; 93: 9594–9599
  • Ikegami M, Korfhagen T R, Whitsett J A, et al. Characteristics of surfactant from SP-A-defieient mice. Am J Physiol 1998; 275: L247–L254
  • Elhalwagi B M, Zhang M, Ikegami M, et al. Normal surfactant pool sizes and inhibition-resistant surfactant from mice that overexpress surfactant protein A. Am J Respir Cell Mol Biol 1999; 21: 380–387
  • LeVine A M, Kurak K E, Bruno M D, Stark J M, Whitsett J A, Korfhagen T R. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998; 19: 700–708
  • Haagsman H P. Interactions of surfactant protein A with pathogens. Biochim Biophys Acta 1998; 19: 2–3
  • King R J, Phillips M C, Horowitz P M, Dang S C. Interaction between the 35 kDa apolipoprotein of pulmonary surfactant and saturated phosphatidylcholines. Effects of temperature. Biochim Biophys Acta 1986; 879: 1–13
  • McCormack F X, Calvert H M, Watson P A, Smith D L, Mason R J, Voelker D R. The structure and function of surfactant protein A. Hydroxyproline- and carbohydrate-deficient mutant proteins. J Biol Chem 1994; 269: 5833–5841
  • Meyboom A, Maretzki D, Stevens P A, Hofmann K P. Reversible calcium-dependent interaction of liposomes with pulmonary surfactant protein A. Analysis by resonant mirror technique and near-infrared light scattering. J Biol Chem 1997; 272: 14600–14605
  • Meyboom A, Maretzki D, Stevens P A, Hofmann K P. Interaction of pulmonary surfactant protein A with phospholipid liposomes: a kinetic study on head group and fatty acid specificity. Biochim Biophys Acta 1999; 1441: 23–35
  • Reilly K E, Mautone A J, Mendelsohn R. Fourier-transform infrared spectroscopy studies of lipid/protein interaction in pulmonary surfactant. Biochemistry 1989; 28: 7368–7373
  • Palaniyar N, Ridsdale R A, Hearn S A, et al. Filaments of surfactant protein A specifically interact with corrugated surfaces of phospholipid membranes. Am J Physiol 1999; 276: L631–E641
  • Palaniyar N, Ridsdale R A, Hearn S A, Possmayer F, Harauz G. Formation of membrane lattice structures and their specific interactions with surfactant protein A. Am J Physiol 1999; 276: L642–L649
  • Taneva S, McEachren T, Stewart J, Keough K M. Pulmonary surfactant protein SP-A with phospholipids in spread monolayers at the air-water interface. Biochemistry 1995; 34: 10279–10289
  • Palaniyar N, Ridsdale R A, Possmayer F, Harauz G. Surfactant protein A (SP-A) forms a novel supraquaternary structure in the form of fibers. Biochem Biophys Res Commun 1998; 250: 131–136
  • Kuroki Y, Akino T. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem 1991; 266: 3068–3073
  • Kuroki Y, Gasa S, Ogasawara Y, Makita A, Akino T. Binding of pulmonary surfactant protein A to galactosylceramide and asialo-GM2. Arch Biochem Biophys 1992; 299: 261–267
  • Childs R A, Wright J R, Ross G F, et al. Specificity of lung surfactant protein SP-A for both the carbohydrate and the lipid moieties of certain neutral glycolipids. J Biol Chem 1992; 267: 9972–9979
  • Ruano M LF, García-Verdugo I, Miguel E, Pérez-Gil J, Casals C. Self-aggregation of surfactant protein A. Biochemistry 2000; 39: 6529–6537
  • Welti R, Glaser M. Lipid domains in model and biological membranes. Chem Phys Lipids 1994; 73: 121–137
  • McCormack F X, Kuroki Y, Stewart J J, Mason R J, Voelker D R. Surfactant protein A amino acids Glul95 and Argl97 are essential for receptor binding, phospholipid aggregation, regulation of secretion, and the facilitated uptake of phospholipid by type II cells. J Biol Chem 1994; 269: 29801–29807
  • Vainio P, Virtanen J A, Kinnunen P K, et al. Action of lipoprotein lipase on phospholipid monolayers. Activation by apolipoprotein C-II. Biochemistry 1983; 22: 2270–2275
  • Stillwell W, Dallman T, Dumaual A C, Crump F T, Jenski L J. Cholesterol versus alpha-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry 1996; 35: 13353–13362
  • Kalina M, Blau H, Riklis S, Kravtsov V. Interaction of surfactant protein A with bacterial lipopolysaccharide may affect some biological functions. Am J Physiol 1995; 268: 0002–9513
  • Pérez-Gil J, Nag K, Taneva S, Keough K M. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers. Biophys J 1992; 63: 197–204
  • Jacobson K, Sheets E D, Simson R. Revisiting the fluid mosaic model of membranes. Science 1995; 268: 1441–1442
  • Silvius J R, del Giudice D, Lafleur M. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 1996; 35: 15198–15208
  • Ahmed S N, Brown D A, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 1997; 36: 10944–10953
  • Kinnunen P K, Koiv A, Lehtonen J Y, Rytomaa M, Mustonen P. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids 1994; 73: 181–207
  • Flower D R, North A C, Attwood T K. Structure and sequence relationships in the lipocalins and related proteins. Protein Sci 1993; 2: 753–761
  • Subirade M, Salesse C, Marion D, Pezolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J 1995; 69: 974–988
  • Haagsman H P, Sargeant T, Hauschka P V, Benson B J, Hawgood S. Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry 1990; 29: 8894–8900
  • McCormack F X, Pattanajitvilai S, Stewart J, Possmayer F, Inchley K, Voelker D R. The Cys6 idisulfide bond and the collagen-like region of rat SP-A play critical roles in interactions with alveolar type II cells and surfactant lipids. J Biol Chem 1997; 272: 27971–27979
  • Haurum J S, Thiel S, Haagsman H P, Laursen S B, Larsen B, Jensenius J C. Studies on the carbohydrate-binding characteristics of human pulmonary surfactant-associated protein A and comparison with two other collectins: mannan-binding protein and conglutinin. Biochem J 1993; 293: 873–878
  • Voorhout W F, Weaver T E, Haagsman H P, Geuze H J, Van Golde L M. Biosynthetic routing of pulmonary surfactant proteins in alveolar type II cells. Microsc Res Tech 1993; 26: 366–373
  • Haller E M, Shelley S A, Montgomery M R, Balis J U. Immunocytochemical localisation of lysozyme and surfactant protein A in rat type II cells and extracellular surfactant forms. J Histochem Cytochem 1992; 40: 1491–1500
  • Osanai K, Mason R J, Voelker D R. Trafficking of newly synthesized surfactant protein A in isolated rat alveolar type II cells. Am J Respir Cell Mol Biol 1998; 19: 929–935
  • Wadsworth S J, Chander A. H+-and K+-dependence of Ca24 uptake in lung lamellar bodies. J Membrane Biol 2000; 174: 41–51
  • Ikegami M, Ueda T, Purtell J, Woods E, Jobe A. Surfactant protein A labeling kinetics in newborn and adult rabbits. Am J Respir Cell Mol Biol 1994; 10: 413–418
  • Voorhout W F, Veenendaal T, Haagsman H P, et al. Intracellular processing of pulmonary surfactant protein B in an endosomal/lysosomal compartment. Am J Physiol 1992; 263: E479–L486
  • Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332: 593–610
  • deMello D E, Heyman S, Phelps D S, Hamvas A, Nogee L, Cole S, Colten H R. Ultrastructure of lung in surfactant protein B deficiency. Am J Respir Cell Mol Biol 1994; 11: 230–239
  • Chander A, Sen N, Wadsworth S, Spitzer A R. Coordinate packaging of newly synthesized phosphatidylcholine and phosphatidylglycerol in lamellar bodies in alveolar type II cells. Lipids 2000; 35: 35–43
  • Schlame M, Casals C, Rustow B, Rabe H, Kunze D. Molecular species of phosphatidylcholine and phosphatidylglycerol in rat lung surfactant and different pools of pneumocytes type II. Biochem J 1988; 253: 209–215
  • van Golde L MG, Casals C. Metabolism of lipids. The Lung, 2nd ed., R G Crystal, J B West. Lippincott-Raven, Philadelphia 1977; 9–18, 1997
  • Nielson D W, Goerke J, Clements J A. Alveolar subphase pH in the lungs of anesthetized rabbits. Proc Natl Acad Sci U S A 1981; 78: 7119–7123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.