9
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Functional Mapping of Surfactant Protein A

Pages 293-318 | Published online: 16 Apr 2010

References

  • King R J, Clements J A. Surface active materials from dog: 1. Method of isolation. Am J Physiol 1972; 223: 707–714
  • Hawgood S, Benson B, Hamilton R J. Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry 1985; 24: 184–190
  • van Iwaarden J F, Teding van Berkhout F, Whitsett J A, Oosting R S, van Golde L MG. A novel procedure for the rapid isolation of surfactant protein A with retention of its alveolar macrophage stimulating properties. Biochem J 1995; 309: 551–555
  • Ruano M L, Garcia-Verdugo I, Miguel E, Perez-Gil J, Casals C. Self-aggregation of surfactant protein A. Biochemistry 2000; 39(21)6529–6537
  • Ruano M L, Miguel E, Perez-Gil J, Casals C. Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A. Biochem J 1996; 313: 683–689, (Pt 2)
  • Wright J R, Zlogar D F, Taylor J C, Zlogar T M, Restrepo C I. Effects of endotoxin on surfactant protein A and D stimulation of NO production by alveolar macrophages. Am J Physiol 1999; 276: L650–658, (4 Ft 1)
  • White R T, Damm D, Miller J, et al. Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 1985; 317: 361–363
  • Drickamer K, Dordal M S, Reynolds L. Mannose-binding proteins isolated from rat liver contain carbohydrate-recognition domains linked to collagenous tails. Complete primary structures and homology with pulmonary surfactant apoprotein. J Biol Chem 1986; 261: 6878–6887
  • Persson A, Chang D, Rust K, Moxley M, Longmore W, Crouch E. Purification and biochemical characterization of CP4 (SP-D), a collagenous surfactant-associated protein. Biochemistry 1989; 28: 6361–6367
  • LimB-L, Willis A C, Reid K BM, et al. Primary stucture of bovine collcetin-43 (CL-43): comparison with conglutinin and lung surfactant protein D. J Biol Chem 1994; 269: 11820–11824
  • LeeY-M, Leiby K R, Allar J, Paris K, Lerch B, Okarma T B. Primary structure of bovine conglutinin, a member of the C-type animal lectin family. J Biol Chem 1991; 266: 2715–2723
  • Ohtani K, Suzuki Y, Eda S, et al. Molecular cloning of a novel human collectin from liver (CL-L1). J Biol Chem 1999; 274(19)13681–13689
  • Hoppe H J, Barlow P N, Reid K B. A parallel three stranded alpha-helical bundle at the nucleation site of collagen triple-helix formation. FEBS Lett 1994; 344: 191–195
  • Weis W I, Drickamer K. Trimeric structure of a C-type mannose-binding protein. Structure 1994; 2: 1227–1240
  • Voss T, Schafer K P, Neilsen P E, et al. Primary structural differences of human surfactant-associated proteins isolated from normal and proteinosis lung. Biochim Biophys Acta 1992; 1138: 261–267
  • Crouch E, Persson A, Chang D, Heuser J. Molecular structure of pulmonary surfactant protein D (SP-D). J Biol Chem 1994; 269(25)17311–17319
  • Lu J, Wiedemann H, Holmskov U, Thiel S, Timpl R, Reid K B. Structural similarity between lung surfactant protein D and conglutinin. Two distinct. C-type lectins containing collagen-like sequences. Eur J Biochem 1993; 215(3)793–799
  • Hattori A, Kuroki Y, Sohma H, Ogasawara Y, Akino T. Human surfactant protein A with two distinct oligomeric structures which exhibit different capacities to interact with alveolar type II cells. Biochem J 1996; 317: 939–944, (Pt 3)
  • Sano K, Fisher J, Mason R J, et al. Isolation and sequence of a cDNA clone for the rat pulmonary surfactant-associated protein (PSP-A). Biochem Biophys Res Commun 1987; 144: 367–374
  • Korfhagen T R, Brunok M D, Glasser S W, et al. Murine pulmonary surfactant SP-A gene: cloning, sequence, and transcriptional activity. Am J Physiol 1992; 263: L546–L554
  • Yuan H T, Gowan S, Kelly F J, Bingle C D. Cloning of guinea pig surfactant protein A defines a distinct cellular distribution pattern within the lung. Am J Physiol 1997; 273: L900–L906
  • Benson B, Hawgood S, Schilling J, et al. Structure of canine pulmonary surfactant protein A: structural homology with complement component Clq. Proc Natl Acacl Sci USA 1985; 82: 6379–6383
  • van Eijk M, Haagsman H P, Skinner T, et al. Porcine lung surfactant protein D: complementary DNA cloning, chromosomal localization, and tissue distribution [published erratum appears in J Immunol 2000 Mar 15;164(6):following 3444J. J Immunol 2000; 164(3)1442–1450
  • Boggararm V, Qing K, Mendelson C R. The major apoprotein of rabbit pulmonary surfactant. Elucidation of primary sequence and cyclic AMP and developmental regulation. J Biol Chem 1988; 263: 2939–2947
  • Pietschmann S M, Pison U. cDNA cloning of ovine pulmonary SP-A, SP-B, and SP-C: isolation of two different sequences for SP-B. Am J Physiol Lung Cell Mol Physiol 2000; 278(4)L765–L778
  • Braems G A, Yao L J, Inchley K, et al. Ovine surfactant protein cDNAs: use in studies on fetal lung growth and maturation after prolonged hypoxemia. Am J Physiol Lung Cell Mol Physiol 2000; 278(4)L754–L764
  • Sekhon H S, Jia Y, Raab R, et al. Prenatal nicotine increases pulmonary alpha 7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest 1999; 103(5)637–647
  • Gao E, Wang Y, McCormick S M, Li J, Seidner S R, Mendelson C R. Characterization of two baboon surfactant protein A genes. Am J Physiol 1996; 271: L617–L630
  • Floros J, Steinbrink R, Jacobs K, et al. Isolation and characterization of cDNA clones for the 35-kDa pulmonary surfactant associated protein. J Biol Chem. 1986; 261: 9029–9033
  • Katyal S L, Singh G, Locker J. Characterization of a second human pulmonary surfactant-associated protein SP-A gene. Am J Respir Cell Mol Biol 1992; 6: 446–452
  • Moore K J, D'Amore-Bruno M A, Korfhagen T R, et al. Chromosomal localization of three pulmonary surfactant protein genes in the mouse. Genomics 1992; 12(2)388–393
  • Hoover R R, Floros J. Organization of the human SP-A and SP-D loci at 10q22-q23. Physical and radiation hybrid mapping reveal gene order and orientation. Am J Respir Cell Mol Biol 1998; 18(3)353–362
  • Goss K L, Kumar A R, Snyder J M. SP-A2 gene expression in human fetal lung airways. Am J Respir Cell Mol Biol 1998; 19(4)613–621
  • Floros J, DiAngelo S, Koptides M, et al. Human SP-A locus: allele frequencies and linkage disequilibrium between the two surfactant protein A genes. Am J Respir Cell Mol Biol 1996; 15(4)489–498
  • Wang G, Phclps D S, Umstead T M, Floros J. Human SP-A protein variants derived from one or both genes stimulate TNF-alpha production in the THP-1 cell line. Am J Physiol Lung Cell Mol Physiol 2000; 278(5)L946–L954
  • Ramet M, Haataja R, Marttila R, Floros J, Hallman M. Association between the surfactant protein A (SP-A) gene locus and respiratory-distress syndrome in the Finnish population. Am J Hum Genet 2000; 66(5)1569–1579
  • Kala P, Ten Have T, Nielsen H, Dunn M, Floros J. Association of pulmonary surfactant protein A (SP-A) gene and respiratory distress syndrome: interaction with SP-B. Pediatr Res 1998; 43(2)169–177
  • Khoor A, Gray M E, Hull W M, Whitsctt J A, Stahlman M T. Developmental expression of SP-A and SP-A mRNA in the proximal and distal respiratory-epithelium in the human fetus and newborn. J Histochem Cytochem 1993; 41: 1311–1319
  • Gao F, Alcorn J L, Mendelson C R. Identification of enhancers in the 5′ -flanking region of the rabbit surfactant protein A (SP-A) gene and characterization of their binding proteins. J Biol Chem 1993; 268: 19697–19709
  • Bruno M D, Bohinski R J, Huclsman K M, Whitselt J A, Korfhagen T R. Lung cell-specific expression of the marine surfactant protein A (SP-A) gene is mediated by interactions between the SP-A promoter and thyroid transcription factor-1. J Biol Chem 1995; 270: 6531–6536
  • Bruno M D, Korfhagen T R, Liu C, Morrisey E E, Whiisett J A. GATA-6 activates transcription of surfactant protein A. J Biol Chem 2000; 275(2)1043–1049
  • Shaw-While J R, Bruno M D, Whitsett J A. GATA-6 activates transcription of thyroid transcription factor-1. J Biol Chem 1999; 274(5)2658–2664
  • Whitsett J A, Weaver T E, Lieberman M A, Clark J C, Daugherty C. Differential effects of epidermal growth factor and transforming growth factor-beta on synthesis of Mr = 35, 000 surfactant-associated protein in fetal lung. J Biol Chem 1987; 262: 7908–7913
  • Snyder J M, Mendelson C R. Insulin inhibits the accumulation of the major lung surfactant apoprotein in human fetal lung explants maintained in vitro. Endocrinology 1987; 120: 1250–1257
  • Whitsett J, Clark J C, Wispe J R, Pryhuber G S. Effects of TNF-alpha and phorbol ester on human surfactant protein and MnSOD gene transcription in vitro. Am J Physiol 1992; 262(6)L688–L693, Pt 1
  • Ballard P L, Liley H G, Gonzales L W, et al. Interferon-gamma and synthesis of surfactant components by cultured human fetal lung. Am J Respir Cell Mol Biol 1990; 2: 137–143
  • Phelps D S, Floros J. Localization of surfactant protein synthesis in human lung by in situ hybridization. Am Rev Respir Dis 1988; 137: 939–942
  • Rubio S, Lacaze-Masmonteil T, Chailley-Heu B, Kahn A, Bourbon J, Ducroc R. Pulmonary surfactant protein A (SP-A) is expressed by epithelial cells of small and large intestine. J Biol Chem 1995; 270: 12162–12169
  • Dutton J M, Goss K, Khubchanclani K R, Shah C D, Smith R J, Snyder J M. Surfactant protein A in rabbit sinus and middle ear mucosa. Ann Otol Rhinol Laryngol 1999; 108(10)915–924
  • Paananen R, Glumoff V, Hallman M. Surfactant protein A and D expression in the porcine Eustachian tube. FEBS Lett 1999; 452(3)141–144
  • Dobbie J W. Surfactant protein A and lamellar bodies: a homologous secretory function of peritoneum, synovium, and lung. Peril Dial Int 1996; 16(6)574–581
  • Wright J R. Immunomodulatory functions of surfactant. Physiol Rev 1997; 77(4)931–962
  • Pison U, Wright J R, Hawgood S. Specific binding of surfactant apoprotein SP-A to rat alveolar macrophages. Am J Physiol 262 (Lung Cell Mol Physiol 6) 1992; 262: L412–L417
  • Kuroki Y, Mason R J, Voelker D R. Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A. Proc Nail Acad Sci USA 1988; 85: 5566–5570
  • Wright J R, Youmans D C. Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am J Physiol 1993; 264: L338–L344
  • Song M, Phelps D S. Comparison of SP-A and LPS effects on the THP-1 monocytic cell line. Am J Physiol Lung Cell Mol Physiol 2000; 279(1)L110–L117
  • van Iwaarden F, Welmers B, Verhoef J, Haagsman H P, van Golde L MG. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 1990; 2: 91–98
  • Tino M J, Wright J R. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 1996; 270(4)L677–L688, Pt 1
  • Tenner A J, Robinson S L, Borchelt J, Wright J R. Human pulmonary surfactant protein (SP-A), a protein structurally homologous to Clq, can enhance FcR-and CRI-mediated phagocytosis. J Biol Chem 1989; 264: 13923–13928
  • Baughman R P, Sternberg R, Hull W, Buchsbaum J A, Whitsett J. Decreased surfactant protein A in patients with bacterial pneumonia. Am Rev Respir Dis 1987; 147: 653–657
  • Postle A D, Mander A, Reid K B, et al. Deficient hydrophilic lung surfactant proteins A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am J Respir Cell Mol Biol 1999; 20(1)90–98
  • Moya F R, Monies H F, Thomas V L, Mouzinho A M, Smith J F, Rosenfeld C R. Surfactant protein A and saturated phosphatidylcholine in respiratory distress syndrome. Am J Respir Grit Care Med 1994; 150: 1672–1677, (6 Pt 1)
  • Gregory T J, Longmorc W J, Moxeley M A, et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest 1991; 88: 1976–1981
  • McCormack F X, King T E, Jr, Voelker D R, Robinson P C, Mason R J. Idiopathic pulmonary fibrosis. Abnormalities in the bronchoalveolar lavage content of surfactant protein A. Am Rev Respir Dis 1991; 144: 160–166
  • Sternberg R I, Whitsett J A, Hull W M, Baughmann R P. Pneumocystis carinii alters surfactant protein A concentrations in bronchoalveolar lavage fluid. J Lab Clin Med 1995; 125: 462–469
  • Phelps D S, Rose R M. Increased recovery of surfactant protein A in AIDS-related pneumonia. Am Rev Respir Dis 1991; 143: 1072–1075
  • LeVine A M, Bruno M D, Huelsman K M, Ross G F, Whitsett J A, Korfhagen T R. Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 1997; 158: 4336–4340
  • LeVine A M, Kurak K E, Wright J R, et al. Surfactant protein-A binds group B streptococcus enhancing phagocytosis and clearance from lungs of surfactant protein-A-deficient mice (in process citation). Am J Respir Cell Mol Biol 1999; 20(2)279–286
  • LeVine A M, Kurak K E, Bruno M D, Stark J M, Whitsett J A, Korfhagen T R. Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 1998; 19(4)700–708
  • Harrod K S, Trapnell B C, Otake K, Korfhagen T R, Whitsett J A. SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Physiol 1999; 277: L580–588, (3 Pt 1)
  • LeVine A M, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest 1999; 103(7)1015–1021
  • Tobias P S, Lee H, Orr S, Soldau K, Tapping R. Innate immune system recognition of microbial pathogens. Immunol Res 2000; 21(2–3)341–343
  • Tobias P S, Soldau K, Iovine N M, Elsbach P, Weiss J. Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem 1997; 272(30)18682–18685
  • Kalina M, Blau H, Riklis S, Kravtsov V. Interaction of surfactant protein A with bacterial lipopolysaccharide. Am J Physiol 1995; 268: L144–L151
  • van Iwaarden J F, Pikaar J C, Storm J, et al. Binding of surfactant protein A to the lipid A moiety of bacterial lipopolysaccharides. Biochem J 1994; 303: 407–411
  • Koptides M, Umstead T M, Floros J, Phelps D S. Surfactant protein A activates NF-kappa B in the THP-1 monocytic cell line. Am J Physiol 1997; 273: L382–L388
  • Kremlev S G, Umstead T M, Phelps D S. Surfactant protein A regulates cytokine production in the monocytic cell line THP-1. Am J Physiol 1997; 272: L996–L1004
  • McIntosh J C, Mervin-Blake S, Conner E, Wright J R. Surfactant protein A protects growing cells and reduces TNF-alpha activity from LPS-stimulated macrophages. Am J Physiol 1996; 271: L310–L319
  • Sano H, Chiba H, Iwaki D, Sohma H, Voelker D R, Kuroki Y. Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem 2000; 275: 22442–22451
  • Milton D K, Amsel J, Reed C E, et al. Cross-sectional follow-up of a flu-like respiratory illness among fiberglass manufacturing employees: endotoxin exposure associated with two distinct sequela. Am J Ind Med 1995; 28: 469–488
  • Michel O, Kips J, Duchateau J, et al. Severity of asthma is related to endotxin in house dust. Am J Respir Grit Care Med 1996; 154: 1641–1646
  • Dubin W, Martin T R, Swoveland P, et al. Asthma and endotoxin: lipopolysac-charide-binding protein and soluble CD-14 in the bronchoalvcolar compartment. Am J Physiol 1996; 270: L736–L744
  • McIntosh J C, Swyers A H, Fisher J H, Wright J R. Surfactant proteins A and D increase in response to intratracheal lipopolysaccharide. Am J Respir Cell Mol Biol 1996; 15: 509–519
  • van Helden H P, Kuijpers W C, Steenvoorden D, et al. Intratracheal acrosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome. Exp Lung Res 1997; 23: 297–316
  • Holm B A. Surfactant inactivation in the adult respiratory distress syndrome. Pulmonary Surfactant: From Molecular Biology to Clinical Practice, B Robertson, L MG van Golcle, J J Batcnburg. Elseiver, Amsterdam 1992
  • Cockshutt A M, Weitz J, Possmayer F. Pulmonary surfactant protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 1990; 29: 8424–8429
  • Yukitake K, Brown C L, Schlueter M A, Clements J A, Hawgood S. Surfactant apoprotein A modifies the inhibitory effect of plasma proteins on surfactant activity in vivo. Pediatr Res 1994; 37: 21–25
  • Ashbaugh D G, Bigelow C B, Petty T L, Levine B E. Acute respiratory distress in adults. Lancet 1967; 2: 319–323
  • Petty T L, Reiss O K, Paul G K, Silvers G W, Elkins N D. Characteristics of pulmonary surfactant in adult respiratory distress syndrome associated with trauma and shock. Am Rev Respir Dis 1977; 115: 531–536
  • Korfhagen T R, Bruno M D, Ross G F, et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acacl Sci 1996; 93: 9594–9599
  • Ikegami M, Korfhagen T R, Whitsett J A, et al. Characteristics of surfactant from SP-A-deficient mice. Am J Physiol 1998; 275(2)L247–L254, Pt 1
  • Elhalwagi B M, Zhang M, Ikegami M, et al. Normal surfactant pool sizes and inhibition-resistant surfactant from mice that overexpress SP-A. Am J Respir Cell Mol Biol 1999; 21: 380–387
  • Veldhuizen R A, Yao L J, Hearn S A, Possmayer F, Lewis J F. Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling. Biochem J 1996; 313: 835–840
  • Veldhuizen R A, Hearn S A, Lewis J F, Possmayer F. Surface-area cycling of different surfactant preparations: SP-A and SP-B are essential for large-aggregate integrity. Biochem J 1994; 300: 519–524
  • Wright J R, Clements J A. Metabolism and turnover of lung surfactant. Am Rev Respir Dis 1987; 135: 426–444
  • Williams M C, Benson B J. Immunocytochemistry localization and identification of the major surfactant protein in adult rat lung. J Histochem Cytochem 1981; 29: 291–305
  • Oosterlaken-Dijksterhuis M A, van Eijk M, van Buel B L, van Golde L M, Haagsman H P. Surfactant protein composition of lamellar bodies isolated from rat lung. Biochem J 1991; 274: 115–119
  • Haller E M, Shelly S A, Montgomery M R, Balis J U. Immunocytochemical localization of lysozyme and surfactant protein A in rat type II cells and extracellular surfactant forms. J Histochem Cytochem 1992; 40: 1491–1500
  • Suzuki Y, Fujita Y, Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis 1989; 140: 75–81
  • Honda Y, Takahashi H, Shijubo N, Kuroki Y, Akino T. Surfactant protcin-A concentration in bronchoalveolar lavage fluids of patients with pulmonary alveolar proteinosis. Chest 1993; 103(2)496–499
  • Hattori A, Kuroki Y, Katoh T, et al. Surfactant protein A accumulating in the alveoli of patients with pulmonary alveolar proteinosis: oligomeric structure and interaction with lipids. Am J Respir Cell Mol Biol 1996; 14(6)608–619
  • Castiello A, Paterson J F, Shelley S A, Haller E M, Balis J U. Depletion of surfactant tubular myelin with pulmonary dysfunction in a rat model for acute enclo-toxemia. Shock 1994; 2(6)427–432
  • McCormack F X, Ikegami M, LeVine A M, Korfhagen T R, Whitsett J A. In vivo structure/function analyses of surfactant protein A. Am J Respir Grit Care Med 2000; 161: A42
  • Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci 1997; 22(1)1–2
  • Fisher A B, Dodia C, Chancier A, Beers M F, Bates S. Inhibition of Trimeresnris flavoridis phospholipase A2 by lung surfactant protein A. Biochim Biophys Acta 1994; 1211: 256–262
  • Fisher A B, Dodia C, Chander A. Inhibition of calcium independent phospholipase A2 by surfactant protein A. Am J Physiol 1994; 267: L335–L341
  • Fisher A B, Dodia C, Manevich Y, Chen J W, Feinstein S I. Phospholipid hydro-peroxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 1999; 274(30)21326–21334
  • Chen J W, Dodia C, Feinstein S I, Jain M K, Fisher A B. 1-cys peroxiredoxin: A bifunctional enzyme with glutathione peroxidase and phospholipase A2. J Biol Chem 2000; 275: 28421–28427
  • Touqui L, Arbibe L. A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today 1999; 5(6)244–249
  • Chilton F H, Averill F J, Hubbard W C, Fonteh A N, Triggiani M, Liu M C. Antigen-induced generation of lyso-phospholipids in human airways. J Exp Med 1996; 183(5)2235–2245
  • McCormack F X, Kuroki Y, Stewart J J, Mason R J, Voelker D R. Surfactant protein A residues glu195 and arg197 are essential for receptor binding, phospholipid aggregation, regulation of secretion and the facilitated uptake of phospholipid by type II cells. J Biol Chem 1994; 269: 29801–29807
  • Kuroki Y, McCormack F X, Ogasawara Y, Mason R J, Voelker D R. Epitope mapping for monoclonal antibodies identifies functional domains of pulmonary surfactant protein A that interact with lipids. J Biol Chem 1994; 269: 29793–29800
  • McCormack F X, Stewart J J, Voelker D R, Damodarasamy M D. Alanine mutagenesis of SP-A reveals that lipid binding and pH-dependent aggregation of liposomes are mediated by the carbohydrate recognition domain of SP-A. Biochemistry 1997; 36: 13963–13971
  • Inone S, Kogaki H, Ikeda K, Samejima Y, Omori-Satoh T. Amino acid sequences of the two subunits of a phospholipase A2 inhibitor from the blood plasma of Trimeresurus flavoviridis. Sequence homologies with pulmonary surfactant proteins and animal lectins. J Biol Chem 1991; 266: 1001–1007
  • McCormack F X, Pattanajitvilai S, Stewart J J, Possmayer F, Inchley K, Voelker D R. The cys6 intermolecular disulfide bond and the collagen-like region of rat SP-A play critical roles in interactions with alveolar type II cells and surfactant lipids. J Biol Chem 1997; 272: 27971–27979
  • Weis W I, Drickamer K, Hendrickson W A. Structure of a C type mannose-binding protein complexed with an oligosaccharide. Nature 1992; 360: 127–134
  • Hakansson K, Lim N K, Hoppe H J, Reid K B. Crystal structure of the trimeric alpha-helical coiled-coil and the three lectin domains of human lung surfactant protein D. Structure Fold Des 1999; 7(3)255–264
  • Graves B J, Crowther R L, Chandran C, et al. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 1994; 367(6463)532–538
  • Nielsen B B, Kastrup J S, Rasmussen H, et al. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil. FEBS Lett 1997; 412(2)388–396
  • Gronwald W, Loewen M C, Lix B, et al. The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 1998; 37(14)4712–4721
  • Poget S F, Legge G B, Proctor M R, Butler P J, Bycroft M, Williams R L. The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with D -galactose. J Mol Biol 1999; 290(4)867–879
  • Meier M, Bider M D, Malashkevich V N, Spiess M, Burkhard P. Crystal structure of the carbohydrate recognition domain of the Hl subunit of the asialogly-coprotein receptor. J Mol Biol 2000; 300(4)857–865
  • Palaniyar N, McCormack F X, Possmayer F, Harauz G. Three-dimensional structure of rat surfactant protein A trimers in association with phospholipid monolayers. Biochemistry 2000; 39(21)6310–6316
  • Swairjo M A, Concha N O, Kaetzel M A, Dedman J R, Seaton B A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct Biol 1995; 2: 968–974
  • Kuroki Y, Akino T. Pulmonary surfactant protein A specifically binds dipalmitoylphosphatidylcholine. J Biol Chem 1991; 266: 3068–3073
  • Honma T, Kuroki Y, Tsunezawa W, et al. The mannose-binding protein A region of glutamic acid195 -alanine222 can functionally replace the surfactant protein A region of glutamic acid195 -phenylalanine228 without loss of interaction with lipids and alveolar type II cells. Biochemistry 1997; 36: 7176–7184
  • Chiba H, Sano H, Saitoh M, et al. Introduction of mannose binding protein-type phosphatidylinositol recognition into pulmonary surfactant protein A. Biochemistry 1999; 38(22)7321–7331
  • Saitoh M, Sano H, Chiba H, et al. Importance of the carboxy-terminal 25 amino acid residues of lung collectins in interactions with lipids and alveolar type II cells. Biochemistry 2000; 39(5)1059–1066
  • Sano H, Kuroki Y, Honma T, et al. Analysis of chimeric proteins identifies the regions in the carbohydrate recognition domains of rat lung collectins that are essential lor interactions with phospholipids, glycolipids, and alveolar type II cells. J Biol Chem 1998; 273: 4783–4789
  • Hoppe H J, Reid K B. Collectins-soluble proteins containing collagenous regions. Protein Sci 1994; 3: 1143–1158
  • Wallis R, Drickamer K. Assymetry adjacent to the collagen-like domain in rat liver mannose binding protein. Biochem J 1997; 325: 391–400
  • Elhalwagi B M, Damodarasamy M, McCormack F X. Alternate amino terminal processing of surfactant protein A results in cysteinyl isolbrms which are required for multimer formation. Biochemistry 1997; 36: 7018–7025
  • Damodarasamy M, Zhang M, Dienger K, McCormack F X. Two rat SP-A isoforms arise by a novel mechanism that includes alternative translation initiation. Biochemistry 2000; 39
  • Zhang M, Damodarasamy M, Elhalwagi B M, McCormack F X. The longer isoform and the Cys-1 disulfide bridge of surfactant protein A are not essential for phospholipid and type II cell interactions. Biochemistry 1998; 37: 16481–16488
  • McCormack F X, Damodarasamy M, Elhalwagi B M. Deletion mapping of N-terminal domains of surfactant protein A: the N-terminal segment is required for phiospholipid aggregation and specific inhibition of surfactant secretion. J Biol Chem 1999; 274: 3173–3183
  • Malhotra R, Laursen S B, Willis A C, Sim R B. Localization of the receptor binding site in the collectin family of proteins. Biochem J 1993; 293: 15–19
  • Chroneos Z C, Abdolrasulnia R, Whitsett J A, Rice W R, Sheperd V L. Purification of a cell-surface receptor for surfactant protein A. J Biol Chem 1996; 271: 16375–16383
  • Palaniyar N, Ridsdale R A, Holterman C E, Inchley K, Possrnayer F, Flaraux G. Structural changes of surfactant protein A induced by cations reorient the protein on lipid bilayers. J Struct Biol 1998; 122: 297–310

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.