81
Views
6
CrossRef citations to date
0
Altmetric
Articles

Serial Carboxyhemoglobin Levels and Its Relationship with Late Onset Sepsis in Preterm Infants: An Observational Cohort Study

&
Pages 145-155 | Received 20 Jun 2019, Accepted 29 Jul 2019, Published online: 20 Aug 2019

References

  • Shane AL, Stoll BJ. Recent developments and current issues in the epidemiology, diagnosis, and management of bacterial and fungal neonatal sepsis. Amer J Perinatol. 2013;30:131–141. doi:10.1055/s-0032-1333413.
  • Gowda H, Norton R, White A, Kandasamy Y. Late-onset neonatal sepsis—a 10-year review from North Queensland, Australia. Pediatr Infect Dis J. 2017;36:883–888. doi:10.1097/INF.0000000000001568.
  • Lean WL, Kamlin CO, Garland SM, Jacobs SE. Stable rates of neonatal sepsis in a tertiary neonatal unit. J Paediatr Child Health. 2015;51:294–299. doi:10.1111/jpc.12715.
  • Pammi M, Weisman LE. Late-onset sepsis in preterm infants: update on strategies for therapy and prevention. Expert Rev anti Infect Ther. 2015;13:487–504. doi:10.1586/14787210.2015.1008450.
  • Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61:748–755. doi:10.1073/pnas.61.2.748.
  • Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57:585–630. doi:10.1124/pr.57.4.3.
  • Maisels MJ, Pathak A, Nelson NM, Nathan DG, Smith CA. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. J Clin Invest. 1971;50:1–8. doi:10.1172/JCI106463.
  • Tokuriki S, Okuno T, Ohta G, Ohshima Y. Carboxyhemoglobin formation in preterm infants is related to the subsequent development of bronchopulmonary dysplasia. Dis Markers. 2015;2015:1. doi:10.1155/2015/620921.
  • Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100:F257–63. doi:10.1136/archdischild-2014-306213.
  • Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev. 2003;55:551–571. doi:10.1124/pr.55.3.5.
  • Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. Faseb J. 1988;2:2557–2568. doi:10.1096/fasebj.2.10.3290025.
  • Kondo M, Itoh S, Kusaka T, Imai T, Isobe K, Onishi S. The ability of neonatal and maternal erythrocytes to produce reactive oxygen species in response to oxidative stress. Early Hum Dev. 2002;66:81–88. doi:10.1016/S0378-3782(01)00234-1.
  • Stanford SJ, Hislop AA, Oltmanns U, Nabel EG, Sang H, Haworth SG, Mitchell JA. Transition from placental to air breathing stimulates haem-oxygenase-1 expression without functional consequence for pulmonary vascular adaptation in pigs and mice. Br J Pharmacol. 2005;144:467–476. doi:10.1038/sj.bjp.0705988.
  • Maines MD, Kappas A. Metals as regulators of heme metabolism. Science. 1977;198:1215–1221. doi:10.1126/science.337492.
  • Engel RR, Rodkey FL, O'Neal JD, Collison HA. Relative affinity of human fetal hemoglobin for carbon monoxide and oxygen. Blood. 1969;33:37–45.
  • McArdle AJ, Webbe J, Sim K, Parrish G, Hoggart C, Wang Y, Kroll JS, Godambe S, Cunnington AJ. Determinants of carboxyhemoglobin levels and relationship with sepsis in a retrospective cohort of preterm neonates. PLoS One. 2016;11:e0161784. doi:10.1371/journal.pone.0161784.
  • Maroti Z, Katona M, Orvos H, Németh I, Farkas I, Túri S. Heme oxygenase-1 expression in premature and mature neonates during the first week of life. Eur J Pediatr. 2007;166:1033–1038. doi:10.1007/s00431-006-0375-x.
  • Morimatsu H, Takahashi T, Matsusaki T, Hayashi M, Matsumi J, Shimizu H, Matsumi M, Morita K. An increase in exhaled CO concentration in systemic inflammation/sepsis. J Breath Res. 2010;4:047103. doi:10.1088/1752-7155/4/4/047103.
  • Langeroudi AG, Hirsch CM, Estabragh AS, Meinardi S, Blake DR, Barbour AG. Elevated carbon monoxide to carbon dioxide ratio in the exhaled breath of mice treated with a single dose of lipopolysaccharide. Open Forum Infect Dis. 2014;1:ofu085.
  • Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med. 2002;28:793–796. doi:10.1007/s00134-002-1269-7.
  • Shi Y, Pan F, Li H, Pan J, Qin S, Jiang D, Shen C. Carbon monoxide concentrations in paediatric sepsis syndrome. Arch Dis Child. 2003;88:889–890. doi:10.1136/adc.88.10.889.
  • van Bel F, Latour V, Vreman HJ, Wong RJ, Stevenson DK, Steendijk P, Egberts J, Krediet TG. Is carbon monoxide-mediated cyclic guanosine monophosphate production responsible for low blood pressure in neonatal respiratory distress syndrome? J Appl Physiol (1985). 2005;98:1044–1049. doi:10.1152/japplphysiol.00760.2004.
  • Guney Varal I, Mengi S, Dogan P, Tutanc M, Bostanci M, Nevzat Cizmeci M. Elevated blood carboxyhemoglobin levels as an early predictor of phototherapy requirement in moderate and late preterm infants. J Matern Fetal Neonatal Med. 2018;29:1–131. doi:10.1080/14767058.2018.1542675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.