86
Views
3
CrossRef citations to date
0
Altmetric
Original Article

FGF Signaling in Skeletal Development

&
Pages 355-379 | Received 22 Dec 1998, Accepted 17 Feb 1999, Published online: 16 Apr 2010

References

  • Basilico C, Moscatelli D. The FGF family of growth factors and ancogenes. Adv Cancer Res 1992; 59: 115–165
  • Klagsbrun M. The fibroblast growth factor family: structural and biological properties. Prog Growth Fact Res 1989; 1: 207–235
  • Tanaka A, Miyamoto K, Minamino N, Takeda M, Sato B, Matsumotor M H, Matsumoto K. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci USA 1992; 89: 8928–8932
  • Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 1993; 13: 4251–4259
  • Smallwood P M, Munozsanjuan I, Tong P, Macke J P, Hendry S HC, Gilbert D J, Copeland N G, Jenkins N A, Nathans J. Fibroblast growth factor (FGF) homologous factors—new members of the FGF family implicated in nervous system. Development Proc Natl Acad Sci USA 1996; 93: 9850–9857
  • Skaer H. Morphogenesis: FGF branches out. Curr Biol 1997; 7: R238–241
  • Mansour S, Goddard J, Capecchi M. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 1993; 117: 13–28
  • Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 1996; 10: 165–175
  • Hébert J M, Rosenquist T, Götz J, Martin G R. FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations. Cell 1994; 78: 1017–1025
  • Feldman B, Poueymirou W, Papaioannou V E, DeChiara T M, Goldfarb M. Requirement of FGF-4 for postimplantation mouse. Development Science 1995; 267: 246–249
  • Kato Y, Iwamoto M. Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation. J Biol Chem 1990; 265: 5903–5909
  • Nagai H, Tsukuda R, Mayahara H. Effects of basic fibroblast growth factor (bFGF) on bone formation in growing rats. Bone 1995; 16: 367–373
  • Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, Fukumoto S, Matsumoto T. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 1995; 136: 1276–1284
  • Lee P L, Johnson D E, Cousens L S, Fried V A, Williams L T. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 245: 57–60
  • Dionne C A, Crumley G, Bellot F, Kaplow J M, Searfoss G, Ruta M, Burgess W H, Jaye M, Schlessinger J. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J 1990; 9: 2685–2692
  • Ruta M, Burgess W, Givol D, Epstein J, Neiger N, Kaplow J, Crumley G, Dionne C, Jaye M, Schlessinger J. Receptor for acidic fibroblast growth factor is related to the tyrosine kinase encoded by the fms-like gene (FLG). Proc Natl Acad Sci USA 1989; 86: 8722–8726
  • Reid H H, Wilks A F, Bernard O. Two forms of the basic fibroblast growth factor receptor-like mRNA are expressed in the developing mouse brain. Proc Natl Acad Sci USA 1990; 87: 1596–1600
  • Hattori Y, Odagiri H, Nakatani H, Miyagawa K, Naito K, Sakamoto H, Katoh O, Yoshida T, Sugimura T, Terada M. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc Natl Acad Sci USA 1990; 87: 5983–5987
  • Safran A, Avivi A, Orr-Urtereger A, Neufeld G, Lonai P, Givol D, Yarden Y. The murine flg gene encodes a receptor for fibroblast growth factor. Oncogene 1990; 5: 635–643
  • Yayon A, Klagsbrun M, Esko J D, Leder P, Ornitz D M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848
  • Partanen J, Makela T P, Eerola E, Korhonen J, Hirvonen H, Claesson-Welsh L, Alitalo K. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 1991; 10: 1347–1354
  • Ornitz D M, Xu J, Colvin J S, McEwen D G, MacArthur C A, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271: 15292–15297
  • Chellaiah A T, McEwen D G, Werner S, Xu J, Ornitz D M. Fibroblast growth factor receptor (FGFR) 3: Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 1994; 269: 11620–11627
  • Werner S, Duan D-SR, de Vries C, Peters K G, Johnson D E, Williams L T. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 1992; 12: 82–88
  • Miki T, Bottaro D P, Fleming T P, Smith C L, Burgess W H, Chan AM-L, Aaronson S A. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 1992; 89: 246–250
  • Xu X, Weinstein M, Li C, Naski M, Cohen R I, Ornitz D M, Leder P, Deng C. Fibroblast growth factor receptor 2 (FGFR2) is required for placentation and limb bud induction. Development, (in press)
  • Noji S, Koyama E, Myokai F, Nohno T, Ohuchi H, Nishikawa K, Taniguchi S. Differential expression of three chick FGF receptor genes, FGFR1, FGFR2 and FGFR3, in limb and feather. Development Progr in Clin Biol Res 1993; 383B: 645–654
  • Ornitz D M, Yayon A, Flanagan J G, Svahn C M, Levi E, Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 1992; 12: 240–247
  • Rapraeger A C, Krufka A, Olwin B B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705–1708
  • Johnson D E, Williams L T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1–41
  • Johnson D E, Lu J, Chen H, Werner S, Williams L T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol 1991; 11: 4627–4634
  • Shi E, Kan M, Xu J, Wang F, Hou J, McKeehan W L. Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants. Mol Cell Biol 1993; 13: 3907–3918
  • Champion-Arnaud P, Ronsin C, Gilbert E, Gesnel M C, Houssaint E, Breathnach R. Multiple mRNAs code for proteins related to the BEK fibroblast growth factor receptor. Oncogene 1991; 6: 979–987
  • Johnson D E, Lee P L, Lu J, Williams L T. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 1990; 10: 4728–4736
  • Avivi A, Yayon A, Givol D. A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III. FEBS Lett 1993; 330: 249–252
  • Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan W L. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 1993; 13: 4513–4522
  • Orr-Urtreger A, Bedford M T, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, Lonai P. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2. Dev Biol 1993; 158: 475–486
  • Gilbert E, Del Gatto F, Champion-Arnaud P, Gesnel M-C, Breathnach R. Control of BEK and K-SAM Splice Sites in Alternative Splicing of the Fibroblast Growth Factor Receptor 2 Pre-mRNA. Mol Cell Biol 1993; 13: 5461–5468
  • Scotet E, Houssaint E. The choice between alternative IIIb and IIIc exons of the FGFR-3 gene is not strictly tissue-specific. Biochim Biophys Acta 1995; 1264: 238–242
  • Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 1987; 131: 123–130
  • Chintala S K, Miller R R, McDevitt C A. Basic fibroblast growth factor binds to heparan sulfate in the extracellular matrix of rat growth plate chondrocytes. Arch Biochem Biophys 1994; 310: 180–186
  • Chintala S K, Miller R R, McDevitt C A. Role of heparan sulfate in the terminal differentiation of growth plate chondrocytes. Arch Biochem Biophys 1995; 316: 227–234
  • Olwin B, Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 1992; 118: 631–639
  • Flaumenhaft R, Moscatelli D, Rifkin D B. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 1990; 111: 1651–1659
  • Ornitz D M, Leder P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J Biol Chem 1992; 267: 16305–16311
  • Roghani M, Mansukhani A, Dell'Era P, Bellosta P, Basilico C, Rifkin D B, Moscatelli D. Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding. J Biol Chem 1994; 269: 3976–3984
  • Pantoliano M W, Horlick R A, Springer B A, Van Dyk D E, Tobery T, Wetmore D R, Lear J D, Nahapetian A T, Bradley J D, Sisk W P. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 1994; 33: 10229–10248
  • Bellus G A, McIntosh I, Smith E A, Aylesworth A S, Kaitila I, Horton W A, Greenhaw G A, Hecht J T, Francomano C A. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 1995; 10: 357–359
  • Rousseau F, Bonaventure J, Legeal-Mallet L, Pelet A, Rozet J-M, Maroteaux P, Le Merrer M, Munnich A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994; 371: 252–254
  • Shiang R, Thompson L M, Zhu Y-Z, Church D M, Fielder T J, Bocian M, Winokur S T, Wasmuth J J. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994; 78: 335–342
  • Superti-Furga A, Eich G, Bucher H U, Wisser J, Giedion A, Gitzelmann R, Steinmann B. A glycine 375-to-cysteine substitution in the transmembrane domain of the fibroblast growth factor receptor-3 in a newborn with achondroplasia. Eur J Pediatr 1995; 154: 215–219
  • Ikegawa S, Fukushima Y, Isomura M, Takada F, Nakamura Y. Mutations of the fibroblast growth factor receptor-3 gene in one familial and six sporadic cases of achondroplasia in Japanese patients. Hum Genet 1995; 96: 309–311
  • Tavormina P L, Shiang R, Thompson L M, Zhu Y, Wilkin D J, Lachman R S, Wilcox W R, Rimoin D L, Cohn D H, Wasmuth J J. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 1995; 9: 321–328
  • Rousseau F, Ghouzzi V, Delezoide A L, Legeai-Mallet L, Le Merrer M, Munnich A, Bonaventure J. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet 1996; 5: 509–512
  • Rousseau F, Saugier P, Le Merrer M, Munnich A, Delezoide A-L, Maroteaux P, Bonaventure J, Narcy F, Sanak M. Stop codon FGFR3 mutations in thanatophoric dwarfism type I. Nat Genet 1995; 10: 11–12
  • Tavormina P L, Rimoin D L, Cohn D H, Zhu Y Z, Shiang R, Wasmuth J J. Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum Mol Genet 1995; 4: 2175–2177
  • Reardon W, Winter R M, Rutland P, Pulleyn L J, Jones B M, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet 1994; 8: 98–103
  • Rutland P, Pulleyn L J, Reardon W, Baraitser M, Hayward R, Jones B, Malcolm S, Winter R M, Oldridge M, Slaney S F, Poole M D, Wilkie A OM. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet 1995; 9: 173–176
  • Jabs E W, Li X, Scott A F, Meyers G, Chen W, Eccles M, Mao J, Charnas L R, Jackson C E, Jaye M. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 1994; 8: 275–279
  • Meyers G A, Day D, Goldberg R, Daentl D L, Przylepa K A, Abrams L J, Graham J M, Jr, Feingold M, Moeschler J B, Rawnsley E, Scott A F, Jabs E W. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: evidence for missense changes, insertions, and a deletion due to alternative RNA splicing. Am J Hum Genet 1996; 58: 491–498
  • Oldridge M, Wilkie A O, Slaney S F, Poole M D, Pulleyn L J, Rutland P, Hockley A D, Wake M J, Goldin J H, Winter R M, et al. Mutations in the third immunoglobulin domain of the fibroblast growth factor receptor-2 gene in Crouzon syndrome. Hum Mol Genet 1995; 4: 1077–1082
  • Gorry M C, Preston R A, White G J, Zhang Y, Singhal V K, Losken H W, Parker M G, Nwokoro N A, Post J C, Ehrlich G D. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet 1995; 4: 1387–1390
  • Park W J, Meyers G A, Li X, Theda C, Day D, Orlow S J, Jones M C, Jabs E W. Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability. Hum Mol Genet 1995; 4: 1229–1233
  • Schell U, Hehr A, Feldman G J, Robin N H, Zackai E H, de Die-Smulders C, Viskochil D H, Stewart J M, Wolff G, Ohashi H, Price R A, Cohen J, Muenke M M, Muenke M. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Hum Mol Genet 1995; 4: 323–328
  • Steinberger D, Mulliken J B, Muller U. Predisposition for cysteine substitutions in the immunoglobulin-like chain of FGFR2 in Crouzon syndrome. Hum Genet 1995; 96: 113–115
  • Meyers G A, Orlow S J, Munrow I R, Przylepa K A, Jabs E W. Fibroblast growth factor receptor 3 transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 1995; 11: 462–464
  • Wilkie A OM, Morriss-Kay G M, Jones E Y, Heath J K. Functions of fibroblast growth factors and their receptors. Current Biol 1995; 5: 500–507
  • Muenke M, Schell U, Hehr A, Robin N H, Losken H W, Schinzel A, Pulleyn L J, Rutland P, Reardon W, Malcolm S, Winter R M. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet 1994; 8: 269–274
  • Lajeunie E, Ma H W, Bonaventure J, Munnich A, LeMerrer M. FGFR2 mutations in Pfeiffer syndrome. Nat Genet 1995; 9: 108
  • Przylepa K A, Paznekas W, Zhang M, Golabi M, Bias W, Bamshad M J, Carey J C, Hall B D, Stevenson R, Orlow S, Cohen M M, Jr, Jabs E W. Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome. Nat Genet 1996; 13: 492–494
  • Wilkie A OM, Slaney S F, Oldridge M, Poole M D, Ashworth G J, Hockley A D, Hayward R D, David D J, Pulleyn L J, Rutland P, Malcolm S, Winter R M, Reardon W. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995; 9: 165–172
  • Bellus G A, Gaudenz K, Zackai E H, Clarke L A, Szabo J, Francomano C A, Muenke M. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet 1996; 14: 174–176
  • Stanescu R, Stanescu V, Maroteaux P. Homozygous Achondroplasia: Morphologic and Biochemical Study of Cartilage. Am J Med Genet 1990; 37: 412–421
  • Webster M K, Donoghue D J. FGFR activation in skeletal disorders: too much of a good thing. Trends Genet. 1997; 13: 178–182
  • Wilkie A OM. Craniosynostosis-genes and mechanisms. Hum Mol Genet 1997; 6: 1647–1656
  • Stephens T D, McNulty T R. Evidence for a metameric pattern in the development of the chick humerus. J. Embryol. Exp. Morphol 1981; 61: 191–205
  • Cohn M J, Izpisúa-Belmonte J C, Abud H, Heath J K, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995; 80: 739–746
  • Crossley P H, Minowada G, MacArthur C A, Martin G R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb. Development Cell 1996; 84: 127–136
  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 1997; 124: 2235–2244
  • Vogel A, Rodriguez C, Izpisuabclmonte J C. Involvement Of Fgf-8 In Initiation, Outgrowth and Patterning Of the Vertebrate Limb. Development 1996; 122: 1737–1750
  • Niswander L, Martin G R. FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 1992; 114: 755–768
  • Suzuki H R, Sakamoto H, Yoshida T, Sugimura T, Terada M, Solursh M. Localization of HstI transcripts to the apical ectodermal ridge in the mouse embryo. Dev Biol 1992; 150: 219–222
  • Crossley P H, Martin G R. The mouse FGF8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 1995; 121: 439–451
  • Savage M P, Hart C E, Riley B B, Sasse J, Olwin B B, Fallon J F. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev Dyn 1993; 198: 159–170
  • Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol 1974; 32: 651–660
  • Summerbell D. Interactions between the proximo-distal and antero-posterior coordinates of positional value during the specification of positional information in the early development of the chick limb bud. J Embryol Exp Morphol 1974; 32: 227–237
  • Saunders J W. The proximo-distal sequence of the origin of the parts of the chicken wing and the role of the ectoderm. J Exp Zool 1948; 108: 363–404
  • Niswander L, Tickle C, Vogel A, Booth I, Martin G R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and pattering of the limb. Cell 1993; 75: 579–587
  • Fallon J F, Lopez A, Ros M A, Savage M P, Olwin B B, Simandl B K. FGF-2: apical ectodermal ridge growth signal for chick limb. Development Science 1994; 264: 104–107
  • Riddle R D, Johnson R L, Laufer E, Tabin C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75: 1401–1416
  • Chang D T, Lopez A, von Kessler D P, Chiang C, Simandl B K, Zhao R, Seldin M F, Fallon J F, Beachy P A. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 1994; 120: 3339–3353
  • Niswander L, Jeffrey S, Martin G R, Tickle C. A Positive Feedback Loop Coordinates Growth and Patterning in the Vertebrate Limb. Nature 1994; 371: 609–612
  • Laufer E, Nelson C E, Johnson R L, Morgan B A, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994; 79: 993–1003
  • Blunt A, Ornitz D, (unpublished data)
  • Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 1991; 113: 1419–1434
  • Rossant J, Cirna B, Partanen J. FGF signaling in mouse gastrulation and anterior-posterior patterning. Cold Spring Harb Symp on Quant Biol, (in press)
  • Neilson K M, Friesel R E. Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J Biol Chem 1995; 270: 26037–26040
  • Vargesson N, Clarke J D, Vincent K, Coles C, Wolpert L, Tickle C. Cell fate in the chick limb bud and relationship to gene expression. Development 1997; 124: 1909–1918
  • Kai Yu, Yuan W, Naski M C, Chellaiah A, Ornitz D M. Increase ligand binding affinity and receptor activity in fibroblast growth factor receptor containing mutations causing. Alpert Syndrome, (unpublished data)
  • Caplan A I, Pechak D G. The cellular and molecular embryology of bone formation. Bone and Mineral Research/5, W A Peck. Elsevier Science Publishers, New York, NY 1987; 5: 117–183, vol New York
  • Kato Y, Iwamoto M, Koike T. Fibroblasts growth factor stimulates colony formation of differentiated chondrocytes in soft agar. J Cell Physiol 1987; 133: 491–498
  • Wroblewski J, Edwall-Arvidsson C. Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 1995; 10: 735–742
  • Trippel S B, Wroblewsk J, Makower A-M, Whelan M C, Schoenfeld D, Doctrow S R. Regulation of growth-plate chondrocytes by insulin-like growth factor I and basic fibroblast growth factor. J Bone Joint Surg 1993; 75: 177–189
  • Koike T, Iwamoto M, Shimazu A, Nakashima K, Suzuki F, Kato Y. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. J Clin Invest 1990; 85: 626–631
  • Iwanoto M, Shimazu A, Nakashima K, Suzuki F, Kato Y. Reduction of basic fibroblasts growth factor receptor is coupled with terminal differentiation of chondrocytes. J Biol Chem 1991; 266: 461–467
  • Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84: 911–921
  • Peters K, Ornitz D M, Werner S, Williams L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 1993; 155: 423–430
  • Shimazu A, Nah H D, Kirsch T, Koyama E, Leatherman J L, Golden E B, Kosher R A, Pacifici M. Syndecan-3 and the Control Of Chondrocyte Proliferation During Endochondral Ossification. Exp Cell Res 1996; 229: 126–136
  • Colvin J S, Bohne B A, Harding G W, McEwen D G, Ornitz D M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12: 390–397
  • Su W CS, Kitagawa M, Xue N R, Xie B, Garofalo S, Cho J, Deng C X, Horton W A, Fu X Y. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386: 288–292
  • Coffin J D, Florkiewicz R Z, Neumann J, Mort-Hopkins T, Dorn G W, II, Lightfoot P, German R, Howles P N, Kier A, O'Toole B A, Sasse J, Gonzalez A M, Baird A, Doetschman T. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 1995; 6: 1861–1873
  • Twal W O, Vasilatos-Younken R, Gay C V, Gay J, Leach R M. Isolation and localization of basic fibroblast growth factor-immunoreactive substance in the epiphyseal growth plate. J Bone Miner Res 1994; 9: 1737–1744
  • Zhou M, Sutliff R L, Paul R J, Lorenz J N, Hoying J B, Haudenschild C C, Yin M, Coffin D, Kong L, Kranias E G, Luo W, Boivin G P, Duffy J J, Pawlowski S S, Doetschman T. FGF2 Control of Vascular Tone. Nat Genet, in press
  • Naski M C, Wang Q, Xu J, Ornitz D M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat. Genet. 1996; 13: 233–237
  • Webster M K, Donoghue D J. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 1996; 15: 520–527
  • Webster M K, D'Avis P Y, Robertson S C, Donoghue D J. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol 1996; 16: 4081–4087
  • Li Y, Mangasarian K, Mansukhani A, Basilico C. Activation of FGF receptors by mutations in the transmembrane domain. Oncogene 1997; 14: 1397–1406
  • Hanks S K, Quinn A M, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241: 42–52
  • Mohammadi M, Schlessinger J, Hubbard S R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 1996; 86: 577–587
  • Couly G F, Coltey P M, Le Douarin N M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 1993; 117: 409–429
  • Cohen J, Cohen M M. Sutural biology and the correlates of craniosynostosis. Am J Med Genetics 1993; 47: 581–616
  • Canalis E, Raisz L G. Effect of fibroblast growth factor on cultured fetal rat calvaria. Metabolism 1980; 29: 108–114
  • McCarthy T L, Centrella M, Canalis E. Effects of fibroblast growth factors on deoxyribonucleic acid and collagen synthesis in rat parietal bond cells. Endocrinology 1989; 125: 2118–2126
  • Rodan S B, Wesolowski G, Yoon K, Rodan G A. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin, and type I collagen mRNA levels in ROS 17/2.8 cells. J Biol Chem 1989; 264: 19934–19941
  • Hurley M M, Abreu C, Harrison J R, Lichtler A C, Raisz L G, Kream B E. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem 1993; 268: 5588–5593
  • Hill P A, Tumber A, Meikle M C. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 1997; 138: 3849–3858
  • Tang K T, Capparelli C, Stein J L, Stein G S, Lian J B, Huber A C, Braverman L E, DeVito W J. Acidic fibroblast growth factor inhibits osteoblast differentiation in vitro: altered expression of collagenase, cell growth-related, and mineralization-associated genes. J Cell Biochem 1996; 61: 152–166
  • Varghese S, Ramsby M L, Jeffrey J J, Canalis E. Basic fibroblast growth factor stimulates expression of interstitial collagenase and inhibitors of metalloproteinases in rat bone cells. Endocrinology 1995; 136: 2156–2162
  • Long M W, Robinson J A, Ashcraft E A, Mann K G. Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors [published erratum appears in. J Clin Invest 1995 Nov;96(5):2541]. J Clin Invest 1995; 95: 881–887
  • Pitaru S, Kotev-Emeth S, Noff D, Kaffuler S, Savion N. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 1993; 8: 919–929
  • Boudreaux J M, Towler D A. Synergistic induction of osteocalcin gene expression: identification of a bipartite element conferring fibroblast growth factor 2 and cyclic AMP responsiveness in the rat osteocalcin promoter. J Biol Chem 1996; 271: 7508–7515
  • Schedlich L J, Flanagan J L, Crofts L A, Gillies S A, Goldberg D, Morrison N A, Eisman J A. Transcriptional activation of the human osteocalcin gene by basic fibroblast growth factor. J Bone Miner Res 1994; 9: 143–152
  • Levi E, Fridman R, Miao H Q, Ma Y S, Yayon A, Vlodavsky I. Matrix metal-loproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA 1996; 93: 7069–7074
  • Neilson K M, Friesel R. Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J Biol Chem 1996; 271: 25049–25057
  • Iseki S, Wilkie A OM, Heath J K, Ishimaru T, Eto K, Morrisskay G M. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied Fgf2. Development 1997; 124: 3375–3384
  • Lomri A, Lemonnier J, de Pollack C, Hott M, de Parseval N, Lajeunie E, Munnich A, Renier D, Marie P J. Mutations in fibroblast growth factor receptor 2 in Apert syndrome promote fetal human calvaria cell differentiation and mesenchyme condensation. J Bone Miner Res 1997; 12: S125
  • Ueno H, Gunn M, Dell K, Tseng A, Jr, Williams L. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem 1992; 267: 1470–1476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.