15
Views
0
CrossRef citations to date
0
Altmetric
Original Article

The CD44 Protein Family: Roles in Embryogenesis and Tumor Progression

&
Pages 381-393 | Received 27 Apr 1998, Accepted 12 May 1998, Published online: 16 Apr 2010

References

  • Murakami S, Miyake K, June C H, Kincade P W, Hodes R J. IL-5 induces a Pgp-1 (CD44) bright B cell subpopulation that is highly enriched in proliferative and Ig secretory activity and binds to hyaluronate. J. Immunol 1990; 145: 3618–3627
  • Murakami S, Miyake K, Abe R, Kincade P W, Hodes R J. Characterization of autoantibody-secreting B cells in mice undergoing stimulatory (chronic) graft-versus-host reactions. Identification of a CD44hi population that binds specifically to hyaluronate. J Immunol 1991; 146: 1422–1427
  • Lesley J, Schulte R, Hyman R. Binding of hyaluronic acid to lumphoid cell lines is inhibited by monoclonal antibodies against Pgp-1. Exp Cell Res 1990; 187: 224–233
  • Lesley J, Howes N, Perschl A, Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J Exp Med 1994; 180: 383–387
  • Sleeman J, Rudy W, Hofmann M, Moll J, Herrlich P, Ponta H. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. J Cell Biol 1996; 135: 1139–1150
  • Naor D, Sionov R V, Ish-Shalom D. CD44: Structure, function and association with the malignant process. Adv Cancer Res 1997; 71: 241–319
  • Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haußmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991; 65: 13–24
  • Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich Zöller P. Participation in normal immune responses of a splice variant of CD44 that encodes a metastatis-inducing domain. Science 1992; 257: 682–685
  • Weiß C, Kolluri Kumar, Keifer E, Göttlicher M. Complementation of Ah receptor deficiency in hepatoma cells: Negative feedback regulation and cell cycle control by the Ah receptor. Exp Cell Res 1996; 226: 154–163
  • DeGrendele C H, Estess P, Picker L J, Siegelman M H. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: A novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med 1996; 1119–1130: 183
  • DeGrendele C H, Estess P, Siegelman M H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672–675
  • DeGrendele C H, Kosfiszer M, Estess P, Siegelman M H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol 1997; 159: 2549–2553
  • Mohamadzaheh M H, DeGrendele H, Arizpe H, Estess P, Siegelman M. Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44-HA-dependent primary adhesion. J Clin Invest 1998; 101: 97–108
  • Liao H X, Levesque M C, Patton K, Bergamo B, Jones D, Moody M A, Telen M J, Haynes B F. Regulation of human CD44H and CD44E isoform binding to hyaluonan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol 1993; 151: 6490–6499
  • He Q J, Lesley J, Hyman R, Ishihara K, Kincade P W. Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluonate recognition. J Cell Biol 1992; 119: 1711–1719
  • Stamenkovic I, Aruffo A, Amiot M, Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J 1991; 10: 343–348
  • Sy M-S, Guo Y-J, Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein. J Exp Med 1992; 176: 623–627
  • Bartolazzi R, Peach R, Aruffo A, Stamenjovic I. Interaction between CD44 and hyaluonate is directly implicated in the regulation of tumor development. J Exp Med 1994; 180: 53–66
  • Yu Q, Toole B P, Stamenjovic I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 1997; 186: 1985–1996
  • Ayroldi E, Cannarile L, Miglorati G, Bartoli A, Nicoletti I, Riccardi C. CD44 (Pgp-1) inhibits CD3 and dexamethasone-induced apoptosis. Blood 1995; 86
  • Rudy W, Hofmann M, Schwartz-Albiez R, Zöller M, Heider K-H, Ponta H, Herrlich P. The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res 1993; 53: 1262–1268
  • Sleeman J, Kondo K, Moll J, Ponta H, Herrlich P. Variant exons v6 and v7 together expand the repertoire of glycosaminoglycans bound by CD44. J Biol Chem 1997; 272: 31837–31844
  • Sleeman J P, Arming S, Moll J F, Hekele A, Rudy W, Sherman L S, Kreil G, Ponta H, Herrlich P. Hyaluronate-independent metastatic behavior of CD44 variant-expression pancreatic carcinoma cells. Cancer Res 1996; 56: 3134–3141
  • Reber S, Matzku S, Günthert U, Ponta H, Herrlich P, Zöler M. Retardation of metastatic tumor growth after immunization with metastatis-specific monoclonal antibodies. Int J Cancer 1990; 46: 919–927
  • Seiter S, Arch R, Komitowski D, Hofmann M, Ponta H, Herrlich P, Matzku S, Zöller M. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med 1993; 177: 443–455
  • Heider K H, Hofmann M, Horst E, van den Berg F, Ponta H, Herrlich P, Pals S T. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 1993; 120: 227–233
  • Moll J, Schmidt A, van der Putten H, Plug R, Ponta H, Herrlich P, Zöller M. Accelerated immune response in transigenic mice expressing rat CD44v4-v7 on T cells. J Immunol 1996; 156: 2085–2094
  • Lamb R F, Hennigan R F, Turnbull K, Katsanakis K D, MacKenzhie E D, Birnie G D, Ozanne B W. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol Cell Biol 1997; 17: 963–976
  • Hudson D L, Sleeman J, Watt F M. CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J Cell Sci 1995; 108: 1959–1970, (Pt 5)
  • Kaya G, Rodriguez I, Jorcano J L, Vassalli P, Stamenhovic I. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev 1997; 11: 996–1007
  • Terpe H-J, Stark H, Prehm P, Günthert U. CD44 variant isoforms are preferentially expressed in basal epithelia of non-malignant human fetal and adult tissues. Histochemistry 1994; 101: 78–79
  • Yu Q, Grammatikakis N, Toole B P. Expression of multiple CD44 isoforms in the apical ectodermal ridge of the embryonic mouse limb. Dev Dyn 1996; 207: 204–214
  • Yu Q, Toole B P. Common pattern of CD44 isoforms is expressed in morphogenetically active epithelia. Dev Dyn 1997; 208: 1–10
  • Wainright D, Sherman L, Sleeman J, Ponta H, Herrlich P. A splice variant of CD44 expressed in the rat apical ectodermal ridge contributes to limb outgrowth. Ann NY Acad Sci 1996; 785: 345–349
  • Sherman L, Waintwright D, Ponta H, Herrlich P. A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchym and is required for limb outgrowth. Genes Dev 1998; 12: 1058–1071
  • Zwilling E. Ectoderm-mesoderm relationship in the development of the chick embryo limb bud. J Exp Zool 1955; 128: 423–442
  • Rubin L, Saunders J W, Jr. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol 1972; 28: 94–112
  • Summerbell D, Wolpert L. Precision of development in chick limb morphogenesis. Nature 1973; 244: 228–30
  • Niswander L, Tickle C, Vogel A, Booth I, Martin G R. FGF-4 replaces the apical ectodermal ridge and directs outgowth and patterning of the limb. Cell 1993; 75: 579–587
  • Niswander L, Martin G R. FGF-4 and BMP-2 have opposite effects on limb outgowth. Nature 1993; 361: 68–76
  • Fallon J, López A, Ros M, Savage M, Olwin B, Simandl B. FGF-2, apical ectodermal ridge growth signal for chick limb development. Science 1994; 264: 104–107
  • Cohn M J, Izpisua-Belmonte J C, Abund H, Heath J K, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995; 80: 739–746
  • Mahmood R, Bresnick J, Hornbruch A, Mahony C, Morton N, Colquhoun K, Martin P, Lumsden A, Dickson C, Mason I. A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Bio 1995; 5: 797–806
  • Crossley P H, Minowada G, MacArthur C A, Martin G R. Role for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 1996; 84: 127–136
  • Vogel A, Rodriguez C, Izpisúa-Belmonte J-C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrae limb. Development 1996; 122: 1737–1750
  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF-8, an apical ectodermal factor. Development 1997; 124: 2235–2244
  • Savage M P, Hart C E, Riley B, Sasse J, Olwin B B, Fallon J R. Distribution of FGF-2 suggests it has a role in chick limb bud growth. Dev Dyn 1993; 198: 159–170
  • Suzuki H R, Sakamoto H, Yoshida T, Sugimora T, Terada M, Solursh M. Localization of Hst-1 transcripts to the apical ectodermal ridge in the mouse embryo. Dev Biol 1992; 150: 219–222
  • Heikinheimo M, Lawshé A, Shackleford G M, Wilson D B, MacArthur C A. Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 1994; 48: 129–138
  • Yayon A, Klagsbrun M, Esko J D, Leder O, Ornitz D M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64: 841–848
  • Rapraeger A C, Krufka A, Olwin B B. Requirement of heparin sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 1991; 252: 1705–1708
  • Spivak-Kroizman T, Lemmon M A, Dikic I, Ladbury S E, Pinchasi D., Hwang J, Jaye M, Grumley G, Schlessinger J, Lax I. Heparin-induced oligomerisation of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation. Cell 1994; 71: 1015–1024
  • Jackson D G, Bell J I, Dickinson R, Timans J, Shields J, Whittle N. Proteoglycan forms on the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol 1995; 128: 673–685
  • Bennett K L, Jackson D G, Simon J C, Tanczos E, Peach R, Modrell B, Stamenkovic I, Plowman G, Aruffo A. CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 1995; 128: 687–698
  • Tanaka Y, Adams D H, Hubscher S, Hirano H, Siebenlist U, Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1beta. Nature 1993; 361: 79–82
  • König H, Moll J, Ponta H, Herrlich P. Trans-acting factors regulate the expression of CD44 splice variants. EMBO J 1996; 15: 4030–4039
  • SenGupta D J, Zhang B, Kraemer B, Pochart P, Fields S, Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 1996; 93: 8496
  • Screaton G R, Bell M V, Jackson D G, Cornelis F B, Gerth U, Bell J I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 1992; 89: 12160–12164
  • Tölg C, Hofmann M, Herrlich P, Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res 1993; 21: 1225–1229
  • König H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by an inducible splice enhancer. EMBO J 1998, in press
  • Watakabe A, Tanaka K, Shimura Y. The role of exon sequences in splice site selection. Genes Dev 1993; 7: 407–418
  • Tanaka K, Watakabe A, Shimura Y. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol Cell Biol 1994; 14: 1347–1354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.