24
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Protein Phosphatase Type 1, The Product of the Retinoblastoma Susceptibility Gene, And Cell Cycle Control

, &
Pages 395-415 | Received 02 Feb 1998, Accepted 17 Nov 1998, Published online: 16 Apr 2010

References

  • Lukas J, Bartkova J, Hohde M, Strauss M, Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995; 15: 2600–2611
  • Quelle D E, Ashmun R A, Shurtleff S A, Kato J, Bar Sagi D M, Roussel M F, Sherr C J. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes & Dev 1993; 7: 1559–1571
  • Ohtsubo M, Theodoras A M, Schumacher J, Roberts J M, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transitions. Mol Cell Biol 1995; 15: 2612–2624
  • Beijersbergen R L, Bernards R. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim Biophys Acta 1996; 1287: 103–120
  • Nurse P. Universal control mechanism regulating onset of M phase. Nature 1990; 344: 503–507
  • Smith S E, Koegl M, Jentsch S. Role of the ubiquitin/proteasome system in regulated protein degradation in S. cerevisiae. Biol Chem 1996; 377: 437–446
  • Udvardy A. The role of controlled proteolysis in cell-cycle regulation. Eur J Biochem 1996; 240: 307–313
  • Spartaro V, Norbury C, Harris A L. The ubiquitin-proteasome pathway in cancer. Br J Cancer 1988; 77: 228–455
  • Fisher R P, Morgan D O. A novel cylcin associates with MO15/CDK7 to form the cdk-activating kinase. Cell 1994; 78: 713–724
  • Martinez A M, Afshar M, Martin F, Cavadore J C, Labbe J C, Doree M. Dual role of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J 1997; 16: 343–354
  • Matsuoka M, Kato J, Fisher R P, Mogan D O, Sherr C J. Activation of cyclin dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol Cell Biol 1994; 14: 7265–7275
  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D. Mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 1991; 64: 1111–1122
  • Hoffmann I, Draetta G, Karsenti E. Activation of the phosphatase activity of human cdc25A by cdk2-cyclinE dependent phosphorylation at the G1/S transition. EMBO J 1994; 13: 4302–4310
  • Hoffmann I, Clarke P R, Marcote M J, Karsenti E, Draetta G. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self amplification of MPF at mitosis. EMBO J 1993; 12: 53–65
  • Sherr C J, Roberts J M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Dev 1995; 9: 1149–1163
  • Peters G. Stifled by inhibitions. Nature 1994; 371: 204–205
  • Zhang H, Hannon G J, Beach D. p21-containing cyclin kinases exist in both active and inactive states. Genes & Dev 1994; 8: 1750–1758
  • Labaer J, Garrett M D, Stevenson L F, Slingerland J M, Sandhu C, Chou H S, Fattaey A, Harlow E. New functional activities for the p21 family of CDK inhibitors. Genes & Dev 1997; 11: 847–862
  • Medema R H, Herrera R E, Lam F, Weinberg R A. Growth suppression by p16ink4a requires functional retinoblastoma protein. Proc Natl Acad Sci USA 1995; 92: 6289–6293
  • Lukas J, Parry D, Aagaard L, Mann D J, Bartkova J, Strauss M, Peters G, Bartek J. Retinoblastoma-protein dependent cell cycle inhibition by the tumor suppressor p16. Nature 1995; 375: 503–506
  • Ewen M E, Sluss H K, Sherr C J, Matsushime H, Kato J, Livingston D M. Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 1993; 73: 487–497
  • DeCaprio J A, Ludlow J W, Figge J, Shew J, Huang C, Lee W, Marsilio E, Paucha E, Livingston D M. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54: 275–283
  • Figge J, Webster T, Smith T F, Paucha E. Prediction of similar transforming regions in SV40 large T, adenovirus E1A and myc oncoproteins. J Virol 1988; 62: 1814–1818
  • Whyte P, Buchkovich K J, Horowitz J M, Friend S H, Raybuck M, Weinberg R A, Harlow E. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334: 124–129
  • Dyson N, Howley P T, Munger K, Harlow E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma product. Science 1989; 243: 934–937
  • Munger K, Werness B A, Dyson N, Phelps W C, Harlow E, Howley P M. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 1989; 8: 4099–4105
  • Kaelin W G, Jr, Ewen M E, Livingston D M. Definition of the minimal SV40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Mol Cell Biol 1990; 10: 3761–3769
  • Riley D J, Lee EY-HP, Lee W-H. The retinoblastoma protein: more than a tumor suppressor. Annu Rev Cell Biol 1994; 10: 1–29
  • Degregori J, Kowalik T, Nevins J R. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 1995; 15: 4215–4224
  • LaThangue N B. E2F and the molecular mechanisms of early cell-cycle control. Biochem Soc Trans 1996; 24: 54–59
  • Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 1996; 8: 805–814
  • Sherr C J. G1 phase progression: cycling on cue. Cell 1994; 79: 551–555
  • Weinberg R A. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330
  • Phelps W C, Munger K, Yee C L, Barnes J A, Howley P M. Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol 1992; 66: 2418–2427
  • Taya Y. Rb kinases and Rb-binding proteins: new points of view. Trends Biochem Sci 1997; 22: 14–17
  • Lees J A, Buchkovich K J, Marshak R, Anderson C W, Harlow E. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J 1991; 10: 4279–4290
  • Kitagawa M, Higashi H, Jung H, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y. The consensus motif for phosphorylation by cyclin D1-cdk4 is different from that for phosphorylation by cyclinA/E-cdk2. EMBO J 1996; 15: 7060–7069
  • Connell-Crowley L, Harper J W, Goodrich D W. Cyclin D1/cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 1997; 8: 287–301
  • Zarkowska T, Mittnacht S. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 1997; 272: 12738–12746
  • Knudsen E S, Wang J YJ. Differential regulation of retinoblastoma protein function by specific cdk phosphorylation sites. J Biol Chem 1997; 271: 8313–8320
  • Knudsen E S, Wang J YJ. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol Cell Biol 1997; 17: 5771–5783
  • Keyomarsi K, O'Leary N, Molnar G, Lees E, Fingert H J, Pardee A B. Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 1994; 54: 380–385
  • Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases and Cdk inhibitors in human cancer. Cancer Res 1996; 68: 67–108
  • de Boer C J, van Krieken J H, Kluin-Nelemans H C, Kluin P M, Schuuring E. Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma. Oncogene 1995; 10: 1833–1840
  • Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis N, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, McClure M, Aitken J F, Anderson D E, Bergman W, Frants R, Goldgar D E, Green A, MacLennan R, Martin N G, Meyer L J, Youl P, Zone J J, Skolnick M H, Cannon-Albright L A. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet 1994; 8: 22–26
  • Liu Q, Neuhausen S, McClure M, Frye C, Weaver-Feldhaus J, Gruis N A, Eddington K, Allalunis-Turner M J, Skolnick M H, Fujimara F K, Kamb A. CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene 1995; 10: 1061–1067
  • Gonzalgo M L, Bender C M, You E H, Glendening J M, Flores J F, Walker G J, Hayward N K, Jones P A, Fountain J W. Low frequency of p16/CDKN2A methylation in sporadic melanomas: Comparative approaches for methylation analysis of primary tumors. Cancer Res 1997; 57: 5336–5347
  • Myohanen S K, Baylin S B, Herman J G. Hypermethylation can selectively silence individual p16INK4A alleles in neoplasia. Cancer Res 1988; 58: 591–593
  • Cohen P. The structure and regulation of protein phosphatases. Annu Res Biochem 1989; 58: 453–508
  • Axton J M, Dombradi V, Cohen P TW, Glover M. One of the protein phosphatase-1 isoenzymes in Drysophila is essential for mitosis. Cell 1990; 63: 33–46
  • Ohkura H, Kinoshita N, Miyatani S, Toda T, Yanagida M. The fission yeast dis2 + gene required for chromosomal disjoining encodes one of two putative type 1 protein phosphatases. Cell 1989; 57: 997–1007
  • Doonan J H, Morris N R. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 1989; 57: 987–996
  • Fernandez A, Brautigan D L, Lamb J C. Protein phosphatase type 1 in mammalian cell mitosis: chromosomal localization and involvement in mitotic exit. J Cell Biol 1992; 116: 1421–1430
  • Yamashita K, Yasuda H, Pines J, Yasumoto K, Nishitani H, Ohtsubo M, Hunter T, Sugimura T, Nishimoto T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J 1990; 9: 4331–4338
  • Gavin A-C, Tsukitani Y, Schorderet-Slatkine S. Induction of M-phase entry of prophase-blocked mouse oocytes through microinjection of okadaic acid, a specific phosphatase inhibitor. Exp Cell Res 1991; 192: 75–81
  • Durfee T, Becherer K, Chen P L, Yen S-H, Yang Y, Kilburn A E, Lee W.-H, Elledge S J. The retinoblastoma protein associates with the protein phosphatase type 1 catalyst subunit. Genes & Dev 1993; 7: 555–569
  • Ludlow J W, Glendening C L, Livingston D M, DeCaprio J A. Specific enzymatic dephosphorylation of retinoblastoma protein. Mol Cell Biol 1993; 13: 367–372
  • Nelson D A, Ludlow J W. Characterization of the mitotic phase pRb-directed protein phosphatase activity. Oncogene 1997; 14: 2407–2415
  • Nelson D A, Krucher N A, Ludlow J W. High molecular weight protein phosphatase type I dephosphorylates the retinoblastoma protein. J Biol Chem 1997; 272: 4528–4535
  • Dohadwala M, Da Cruz de Silva E F, Hall F L, Williams R T, Carbonaro-Hall D A, Nairn A C, Greengard P, Berndt N. Phosphorylation and inactivation of protein phosphatase 1 by cyclin dependent kinases. Proc Natl Acad Sci USA 1994; 91: 6408–6412
  • Yamano H, Ishii K Yanagida. Phosphorylation of dis 2 protein phosphatase at the C-terminal cdc2 consensus and its potential role in cell cycle regulation. EMBO J 1994; 13: 5310–5318
  • Puntoni Villa F., Moruzzi E. Phosporylation of protein phosphatase-1 isoforms by cdc2-cyclin B in vitro. Mol Cell Biochem 1997; 171: 115–120
  • Puntoni F, Villa-Moruzzi E. Protein phosphatase-1α, γ1, and δ: changes in phosphorylation and activity in mitotic HeLa cells and in cells released from the mitotic block. Arch Biochem Biophys 1997; 340: 177–184
  • Kwon Y G, Lee S Y, Choi Y, Greengard P, Nairn A C. Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci USA 1997; 94: 2168–2173
  • Berndt N, Dohadwala M, Liu C WY. Constitutively active phosphatase 1α causes Rb-dependent G1 arrest in human cancer cells. Curr Biol 1997; 7: 375–386
  • Wera S, Hemmings B A. Serine/threonine protein phosphatases. Biochem J 1995; 311: 17–29
  • Dent P, Campbell D G, Cauldwell F B, Cohen P. Identification of three in vivo phosphorylation sites on the glycogen-binding subunit of protein phosphatase 1 from rabbit skeletal muscle, and their response to adrenaline. FEBS Lett 1990; 259: 281–285
  • Nakielny S, Campbell D G, Cohen P. The molecular mechanism by which adrenaline inhibits glycogen synthesis. Eur J Biochem 1991; 199: 713–722
  • Dent P, Lavoinne A, Nakielny S, Cauldwell F B, Watt P, Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 1990; 348: 302–308
  • Murata K, Hirano K, Villa-Moruzzi E, Hartshorne D J, Brautigan D L. Differential localization of myosin and myosin phosphatase in smooth muscle cells and migrating fibroblasts. Mol Cell Biol 1997; 8: 663–673
  • Beullens M, Stalmans W, Bollen M. Charcterization of a ribosomal inhibitory polypeptide of protein phosphatase 1 from rat liver. Eur J Biochem 1996; 239: 183–189
  • Helps N R, Barker H M, Elledge S J, Cohen P TW. Protein phosphatase-1 interacts with p53BP2, a protein which binds to the tumor suppressor p53. FEBS Lett 1995; 377: 295–300
  • Beullens M, Eynde A V, Stalmans W, Bollen M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem 1992; 267: 16538–16544
  • Allen P B, Kwon Y G, Nairn A C, Greengard P. Isolation and characterization of PNUTS, a putative protein phosphatase 1 nuclear targeting subunit. J Biol Chem 1998; 273: 4089–4095
  • Guillemin K, Krasnow M A. The hypoxic response: huffing and HIFing. Cell 1997; 89: 9–12
  • Graeber T G, Peterson J F, Tsai M, Monica K, Fornace K AJ, Jr, Giaccia A J. Hypoxia induces accumulation of p53 protein, but activation of G1-phase check point by low-oxygen conditions is independent of p53 status. Mol Cell Biol 1994; 14: 6264–6277
  • Amellem O, Pettersen E O. Cell inactivation and cell cycle inhibition as induced by extreme hypoxia: the possible role of cell cycle arrest as a protection against hypoxia-induced lethal damage. Cell Prolif 1991; 24: 127–141
  • Heacock C S, Sutherland R M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br J Cancer 1990; 62: 217–225
  • Amellem O, Stokke T, Sandvik J A, Pettersen E O. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress. Exp Cell Res 1996; 227: 106–115
  • Krtolica A, Ludlow J W. Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected. Cancer Res 1996; 56: 1168–1173
  • Ludlow J W, Howell R L, Smith H C. Hypoxic stress induces reversible hypophosphorylation of pRb and reduction in cyclin A abundance independent of cell cycle progression. Oncogene 1993; 8: 331–339
  • Krtolica A, Krucher N A, Ludlow J W. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities. Oncogene 1998; 17: 2295–2304
  • Brautigan D L, Shriner C L. Methods to distinguish various types of protein phosphatase activity. Methods Enzymol 1988; 159: 339–346
  • Lefebvre P, Gaub M-P, Tahayato A, Rochette-Egly C, Formstecher P. Protein phosphatases 1 and 2A regulate the transcriptional and DNA binding activities of retinoic acid receptors. J Biol Chem 1995; 18: 10806–10816
  • Daniel S, Zhang S, DePaoli-Roach A A, Kim K-H. Dephosphorylation of Sp1 by protein phosphatase 1 is involved in the glucose-mediated activation of the acetyl-coA carboxylase gene. J Biol Chem 1996; 271: 14692–14697
  • Chen L I, Nishinaka T, Kwan K, Kitabayashi I, Yokoyama K, Fu Y-HF, Grunwald S, Chiu R. The retinoblastoma gene product RB stimulates Sp1-mediated transcription by liberating Sp1 from a negative regulator. Mol Cell Biol 1993; 14: 4380–4389
  • Kim S J, Onwuta U S, Lee Y I, Li R, Botchan M R, Robbins P D. The retinoblastoma gene product regulates Sp1-mediated transcription. Mol Cell Biol 1992; 12: 2455–2463
  • Udvadia A J, Templeton D J, Horowitz J M. Functional interactions between the retinoblastoma (Rb) protein and the Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci USA 1995; 92: 3953–3957
  • Baharians Z, Schönthal A H. Autoregulation of protein phosphatase type 2A expression. J Biol Chem 1998; 273: 19019–19024
  • Barker H M, Jones T A, de Cruz de Silva E F, Spurr N K, Sheer D, Cohen P TW. Localization of the gene encoding type 1 phosphatase catalytic subunit to human chromosome band 11q13. Genomics 1990; 7: 159–166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.