2,585
Views
1
CrossRef citations to date
0
Altmetric
Research paper

ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 557-576 | Received 29 Mar 2023, Accepted 20 Oct 2023, Published online: 17 Nov 2023

References

  • Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Bio. 2008;182:685–701. Pubmed PMID 18725538. doi: 10.1083/jcb.200803137
  • Mizushima N, Yoshimori T, Ohsumi Y, The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011; 27:107–132. Pubmed PMID 21801009. doi: 10.1146/annurev-cellbio-092910-154005
  • Melia TJ, Lystad AH, Simonsen A Autophagosome biogenesis: from membrane growth to closure. J Cell Bio. 2020;219: Pubmed PMID 32357219. doi: 10.1083/jcb.202002085
  • Nishimura T, Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov. 2020;6(1):32. Pubmed PMID 32509328. doi: 10.1038/s41421-020-0161-3
  • Valverde DP, Yu S, Boggavarapu V, et al. ATG2 transports lipids to promote autophagosome biogenesis. J Cell Bio. 2019;218:1787–1798. Pubmed PMID 30952800. doi: 10.1083/jcb.201811139
  • Maeda S, Yamamoto H, Kinch LN, et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol. 2020;27:1194–1201. Pubmed PMID 33106659. doi: 10.1038/s41594-020-00520-2
  • Levine TP Sequence analysis and structural predictions of lipid transfer bridges in the repeating beta groove (RBG) superfamily reveal past and present domain variations affecting form, function and interactions of VPS13, ATG2, SHIP164, Hobbit and tweek. Contact. 2022;5:1–21. Pubmed PMID 36571082. doi: 10.1177/25152564221134328
  • van Vliet AR, Chiduza GN, Maslen SL, et al. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Mol Cell. 2022;82:4324–4339.e8. Pubmed PMID 36347259 doi: 10.1016/j.molcel.2022.10.017
  • Matoba K, Kotani T, Tsutsumi A, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 2020;27:1185–1193. Pubmed PMID 33106658. doi: 10.1038/s41594-020-00518-w
  • Lees JA, Reinisch KM Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. Curr Opin Cell Biol. 2020;65:66–71. Pubmed PMID 32213462. doi: 10.1016/j.ceb.2020.02.008
  • Holthuis JCM, Jahn H, Menon AK, et al. An alliance between lipid transfer proteins and scramblases for membrane expansion. Fac Rev. 2022;11:22. Pubmed PMID 36081427 doi: 10.12703/r-01-0000015
  • Ghanbarpour A, Valverde DP, Melia TJ, et al. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc Natl Acad Sci, USA. 2021;118:e2101562118. Pubmed PMID 33850023 doi: 10.1073/pnas.2101562118
  • Andrejeva G, Gowan S, Lin G, et al. De novo phosphatidylcholine synthesis is required for autophagosome membrane formation and maintenance during autophagy. Autophagy. 2020;16:1044–1060. Pubmed PMID 31517566. doi: 10.1080/15548627.2019.1659608
  • Rowland LA, Guilherme A, Henriques F, et al. De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics. Nat Commun. 2023;14:1362. Pubmed PMID 36914626. doi: 10.1038/s41467-023-37016-8
  • Young ARJ, Chan EYW, Hu XW, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci. 2006;119:3888–3900. Pubmed PMID 16940348 doi: 10.1242/jcs.03172
  • Orsi A, Razi M, Dooley HC, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23:1860–1873. Pubmed PMID 22456507 doi: 10.1091/mbc.e11-09-0746
  • Judith D, Jefferies HBJ, Boeing S, et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Bio. 2019;218:1634–1652. Pubmed PMID 30917996. doi: 10.1083/jcb.201901115
  • Sawa-Makarska J, Baumann V, Coudevylle N, et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science. 2020;369:eaaz7714. Pubmed PMID 32883836 doi: 10.1126/science.aaz7714
  • Yamamoto H, Kakuta S, Watanabe TM, et al. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Bio. 2012;198:219–233. Pubmed PMID 22826123. doi: 10.1083/jcb.201202061
  • Koyama-Honda I, Itakura E, Fujiwara TK, et al. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy. 2013;9:1491–1499. Pubmed PMID 23884233. doi: 10.4161/auto.25529
  • Yamada T, Carson AR, Caniggia I, et al. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J Biol Chem. 2005;280:18283–18290. Pubmed PMID 15755735. doi: 10.1074/jbc.M413957200
  • Sjöstedt E, Zhong W, Fagerberg L, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367. Pubmed PMID 32139519.
  • Wang N, Tan H-Y, Li S, et al. Atg9b deficiency suppresses autophagy and potentiates endoplasmic reticulum stress-associated hepatocyte apoptosis in Hepatocarcinogenesis. Theranostics. 2017;7:2325–2338. Pubmed PMID 28740555. doi: 10.7150/thno.18225
  • Liang W, Moyzis AG, Lampert MA, et al. Aging is associated with a decline in Atg9b-mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell. 2020;19(8): Pubmed PMID 32627317. doi: 10.1111/acel.13187
  • Wang L, Yuan Y, Wang J, et al. ASCL2 maintains stemness phenotype through ATG9B and sensitizes gliomas to autophagy inhibitor. Adv Sci. 2022;9:2105938. Pubmed PMID 35882624. doi: 10.1002/advs.202105938
  • Tingting C, Shizhou Y, Songfa Z, et al. Human papillomavirus 16E6/E7 activates autophagy via Atg9B and LAMP1 in cervical cancer cells. Cancer Med. 2019;8:4404–4416. Pubmed PMID 31215164 doi: 10.1002/cam4.2351
  • Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, et al. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36:W35. Pubmed PMID 18442995 doi: 10.1093/nar/gkn211
  • Imai K, Hao F, Fujita N, et al. Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J Cell Sci. 2016;129:3781–3791. Pubmed PMID 27587839 doi: 10.1242/jcs.196196
  • Popovic D, Dikic I TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 2014;15:392–401. Pubmed PMID 24603492. doi: 10.1002/embr.201337995
  • Mattera R, Park SY, De Pace R, et al. AP-4 mediates export of ATG9A from the trans -Golgi network to promote autophagosome formation. Proc Natl Acad Sci, USA. 2017;114:E10697–E10706. Pubmed PMID 29180427 doi: 10.1073/pnas.1717327114
  • Davies AK, Itzhak DN, Edgar JR, et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun. 2018;9:3958. Pubmed PMID 30262884. doi: 10.1038/s41467-018-06172-7
  • Zhou C, Ma K, Gao R, et al. Regulation of mATG9 trafficking by src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res. 2017;27:184–201. Pubmed PMID 27934868. doi: 10.1038/cr.2016.146
  • Ren X, Nguyen TN, Lam WK, et al. Structural basis for ATG9A recruitment to the ULK1 complex in mitophagy initiation. Sci Adv. 2023;9:eadg2997. Pubmed PMID 36791199 doi: 10.1126/sciadv.adg2997
  • Nguyen A, Lugarini F, David C, et al. Metamorphic proteins at the basis of human autophagy initiation and lipid transfer. Mol Cell. 2023;83:2077–2090.e12. Pubmed PMID 37209685 doi: 10.1016/j.molcel.2023.04.026
  • Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol. 2021;4:874. Pubmed PMID 34267316. doi: 10.1038/s42003-021-02399-1
  • Guardia CM, Tan X, Lian T, et al. Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 2020;31:107837. Pubmed PMID 32610138 doi: 10.1016/j.celrep.2020.107837
  • Lai LTF, Yu C, Wong JSK, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9. Autophagy. 2020;16:575–583. Pubmed PMID 31276439. doi: 10.1080/15548627.2019.1639300
  • Nakane T, Kimanius D, Lindahl E, et al. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife. 2018;7:e36861. Pubmed PMID 29856314 doi: 10.7554/eLife.36861
  • Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–596. Pubmed PMID 34293799. doi: 10.1038/s41586-021-03828-1
  • Grosdidier A, Zoete V, Michielin O SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–W277. Pubmed PMID 21624888. doi: 10.1093/nar/gkr366
  • Falzone ME, Accardi A. Reconstitution of proteoliposomes for phospholipid scrambling and nonselective channel assays. Methods Mol Biol. 2020;2127:207–225. Pubmed PMID 32112325.
  • Maeda S, Otomo C, Otomo T, The autophagic membrane tether ATG2A transfers lipids between membranes. Elife. 2019;8. Pubmed PMID 31271352. doi: 10.7554/eLife.45777.
  • Guernsey MW, Chuong EB, Cornelis G, et al. Molecular conservation of marsupial and eutherian placentation and lactation. Elife. 2017;6. Pubmed PMID 28895534.
  • Cantor RS Lipid composition and the lateral pressure profile in Bilayers. Biophys J. 1999;76:2625–2639. Pubmed PMID 10233077. 10.1016/S0006-3495(99)77415-1
  • Marsh D Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J. 2007;93:3884–3899. Pubmed PMID 17704167. doi: 10.1529/biophysj.107.107938
  • Chumpen Ramirez S, Gómez-Sánchez R, Verlhac P, et al. Atg9 interactions via its transmembrane domains are required for phagophore expansion during autophagy. Autophagy. 2022;19:1459–1478. Pubmed PMID 36354155 doi: 10.1080/15548627.2022.2136340
  • Gutierrez E, Shin B-S, Woolstenhulme CJ, et al. eIF5A promotes translation of polyproline motifs. Mol Cell. 2013;51:35–45. Pubmed PMID 23727016 doi: 10.1016/j.molcel.2013.04.021
  • Sayers EW, Bolton EE, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50:D20–D26. Pubmed PMID 34850941 doi: 10.1093/nar/gkab1112
  • Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–D995. Pubmed PMID 34791404 doi: 10.1093/nar/gkab1049
  • Edgar RC, MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. Pubmed PMID 15034147. doi: 10.1093/nar/gkh340
  • Katoh K, Standley DM, MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. Pubmed PMID 23329690. doi: 10.1093/molbev/mst010
  • Waterhouse AM, Procter JB, Martin DMA, et al. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. Pubmed PMID 19151095. doi: 10.1093/bioinformatics/btp033
  • Paysan-Lafosse T, Blum M, Chuguransky S, et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418–D427. Pubmed PMID 36350672 doi: 10.1093/nar/gkac993
  • Nguyen L-T, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. Pubmed PMID 25371430 doi: 10.1093/molbev/msu300
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. Pubmed PMID 28481363 doi: 10.1038/nmeth.4285
  • Huson DH, Scornavacca C Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–1067. Pubmed PMID 22780991. doi: 10.1093/sysbio/sys062
  • Zheng SQ, Palovcak E, Armache J-P, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14:331–332. Pubmed PMID 28362437. doi: 10.1038/nmeth.4193
  • Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016; 193:1–12. Pubmed PMID 26592709. doi: 10.1016/j.jsb.2015.11.003
  • Wagner T, Merino F, Stabrin M, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol. 2019;2:218. Pubmed PMID 31240256. doi: 10.1038/s42003-019-0437-z
  • Punjani A, Rubinstein JL, Fleet DJ, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods. 2017;14:290–296. Pubmed PMID 28165473. doi: 10.1038/nmeth.4169
  • Tan YZ, Baldwin PR, Davis JH, et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods. 2017;14(8):793–796. Pubmed PMID 28671674. doi: 10.1038/nmeth.4347
  • Su M goCTF: geometrically optimized CTF determination for single-particle cryo-EM. J Struct Biol. 2019;205:22–29. Pubmed PMID 30496818. doi: 10.1016/j.jsb.2018.11.012
  • Rosenthal PB, Henderson R Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. J Mol Biol. 2003;333:721–745. Pubmed PMID 14568533. doi: 10.1016/j.jmb.2003.07.013
  • Scheres SHW, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods. 2012;9(9):853–854. Pubmed PMID 22842542. doi: 10.1038/nmeth.2115
  • Nakane T, Scheres SHW. Multi-body refinement of cryo-EM images in RELION. In: Walker JM, editor. Methods in molecular biology. Totowa, NJ, USA: Humana Press Inc; 2021. p. 145–160.
  • Scheres SHW RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180:519–530. Pubmed PMID 23000701. doi: 10.1016/j.jsb.2012.09.006
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. Pubmed PMID 15264254 doi: 10.1002/jcc.20084
  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(12):2126–2132. Pubmed PMID 15572765. doi: 10.1107/S0907444904019158
  • Chen VB, Arendall WB, Headd JJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21. Pubmed PMID 20057044. doi: 10.1107/S0907444909042073
  • Afonine PV, Poon BK, Read RJ, et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol. 2018;74:531–544. Pubmed PMID 29872004 doi: 10.1107/S2059798318006551
  • Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. Pubmed PMID 27166375. doi: 10.1093/nar/gkw408