2,360
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Pycard deficiency inhibits microRNA maturation and prevents neointima formation by promoting chaperone-mediated autophagic degradation of AGO2/argonaute 2 in adipose tissue

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 629-644 | Received 29 Aug 2022, Accepted 26 Oct 2023, Published online: 14 Nov 2023

References

  • Bartel DP. MicroRNAs: target recognition and regulatory functions [J]. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRnas and siRnas. Cell. 2009;136(4):642–655. doi: 10.1016/j.cell.2009.01.035
  • Davis-Dusenbery BN, Wu C, Hata A, et al. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arteriosclerosis Thrombosis Vasc Biol. 2011;31(11):2370–2377. doi: 10.1161/ATVBAHA.111.226670
  • Wang D, Atanasov AG. The microRnas regulating vascular smooth muscle cell proliferation: a minireview. Int J Mol Sci. 2019;20(2):324. doi: 10.3390/ijms20020324
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–524. doi: 10.1038/nrm3838
  • Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:2470. doi: 10.3389/fimmu.2020.591803
  • Gibbings D, Mostowy S, Jay F, et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol. 2012;14(12):1314–1321. doi: 10.1038/ncb2611
  • Tsuboyama K, Tadakuma H, Tomari Y. Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Molecular Cell. 2018;70(4):722–729. e4. doi: 10.1016/j.molcel.2018.04.010
  • Gross O, Thomas CJ, Guarda G, et al. The inflammasome: an integrated view. Immunol Rev. 2011;243(1):136–151. doi: 10.1111/j.1600-065X.2011.01046.x
  • Ren X-S, Tong Y, Ling L, et al. NLRP3 gene deletion attenuates angiotensin II-induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling. Cell Physiol Biochem. 2017;44(6):2269–2280. doi: 10.1159/000486061
  • Sun H-J, Ren X-S, Xiong X-Q, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis. 2017;8(10):e3074–e3074. doi: 10.1038/cddis.2017.470
  • Zhou W, Xi D, Shi Y, et al. MicroRNA‑1929‑3p participates in murine cytomegalovirus‑induced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation corrigendum in/10.3892/ijmm. 2022.5082. Int J Mol Med. 2021;47(2):719–731. 10.3892/ijmm.2020.4829
  • Jin Y, Fu J. Novel insights into the NLRP 3 inflammasome in atherosclerosis. J Am Heart Assoc. 2019;8(12):e012219.10.1161/JAHA.119.012219
  • Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–1740. doi: 10.1161/CIRCRESAHA.118.311362
  • Yajima N, Takahashi M, Morimoto H, et al. Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice [J]. Circulation. 2008;117(24):3079–3087. doi: 10.1161/CIRCULATIONAHA.107.746453
  • Ippagunta SK, Brand DD, Luo J, et al. Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem. 2010;285(16):12454–12462. doi: 10.1074/jbc.M109.093252
  • Ellebedy AH, Lupfer C, Ghoneim HE, et al. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Nat Acad Sci. 2011;108(7):2927–2932. doi: 10.1073/pnas.1012455108
  • Ippagunta SK, Malireddi RS, Shaw PJ, et al. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated rac activation and actin polymerization. Nat Immunol. 2011;12(10):1010–1016. doi: 10.1038/ni.2095
  • Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 2009;5(5):649–662. doi: 10.4161/auto.5.5.8249
  • Kaushik S, Massey AC, Mizushima N, et al. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. ?Mol Biol Cell. 2008;19(5):2179–2192. doi: 10.1091/mbc.e07-11-1155
  • Hao Y, Kacal M, Ouchida AT, et al. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy. 2019;15(9):1558–1571. doi: 10.1080/15548627.2019.1586255
  • Kirchner P, Bourdenx M, Madrigal-Matute J, et al. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol. 2019;17(5):e3000301. doi: 10.1371/journal.pbio.3000301
  • Chiang H-L, Terlecky SR, Plant CP, et al. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989;246(4928):382–385. doi: 10.1126/science.2799391
  • Li L, Fang R, Liu B, et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. Oncogene. 2016;35(31):4048–4057. doi: 10.1038/onc.2015.476
  • Zhang Y, Xu Y-Y, Yao C-B, et al. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy. 2017;13(3):538–553. doi: 10.1080/15548627.2016.1268302
  • Hu P, Zhao H, Zhu P, et al. Dual regulation of arabidopsis AGO2 by arginine methylation. Nat Commun. 2019;10(1):1–10. doi: 10.1038/s41467-019-08787-w
  • Scaramuzzino C, Monaghan J, Milioto C, et al. Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS One. 2013;8(4):e61576. doi: 10.1371/journal.pone.0061576
  • Lee J, Sayegh J, Daniel J, et al. PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem. 2005;280(38):32890–32896. doi: 10.1074/jbc.M506944200
  • Stienstra R, Van Diepen JA, Tack CJ, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Nat Acad Sci. 2011;108(37):15324–15329. doi: 10.1073/pnas.1100255108
  • Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med. 2011;17(2):179. doi: 10.1038/nm.2279
  • Luo T, Cui S, Bian C, et al. Crosstalk between TGF-β/Smad3 and BMP/BMPR2 signaling pathways via Mir17–92 cluster in carotid artery restenosis. Mol Cell Biochem. 2014;389(1):169–176. doi: 10.1007/s11010-013-1938-6
  • Zhang X, Liu J, Wu L, et al. MicroRNAs of the Mir17~ 92 family maintain adipose tissue macrophage homeostasis by sustaining IL-10 expression. Elife. 2020;9:e55676. doi: 10.7554/eLife.55676
  • Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and ipaf. Nature. 2004;430(6996):213–218. doi: 10.1038/nature02664
  • Mallory AC, Elmayan T, Vaucheret H. MicroRNA maturation and action—the expanding roles of ARGONAUTEs. Curr Opin Plant Biol. 2008;11(5):560–566. doi: 10.1016/j.pbi.2008.06.008
  • Frühbeck G. Overview of adipose tissue and its role in obesity and metabolic disorders. Adipose Tissue Protocols. 2008;456:1–22. doi: 10.1007/978-1-59745-245-8_1
  • Feng S, Gao L, Zhang D, et al. Mir93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci. 2019;15(12):2615. doi: 10.7150/ijbs.36995
  • Iaconetti C, Polimeni A, Sorrentino S, et al. Inhibition of Mir92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol. 2012;107(5):296. doi: 10.1007/s00395-012-0296-y
  • Daniel J-M, Penzkofer D, Teske R, et al. Inhibition of Mir92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res. 2014;103(4):564–572. doi: 10.1093/cvr/cvu162
  • Yang D, Sun C, Zhang J, et al. Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation. Int J Mol Med. 2018;41(1):43–50. doi: 10.3892/ijmm.2017.3212
  • Song L, Feng Y, Tian F, et al. Integrated microarray for identifying the hub mRnas and constructed miRNA-mRNA network in coronary in-stent restenosis. Physiol Genomics. 2022;54(10):371–379. doi: 10.1152/physiolgenomics.00089.2021
  • He M, Gong Y, Shi J, et al. Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis [J]. PLoS One. 2014;9(11):e112043. doi: 10.1371/journal.pone.0112043
  • Yuan L, Dong J, Zhu G, et al. Diagnostic value of circulating microRnas for in-stent restenosis in patients with lower extremity arterial occlusive disease. Sci Rep. 2019;9(1):1–7. doi: 10.1038/s41598-018-36295-2
  • Mantel P-Y, Hjelmqvist D, Walch M, et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria [J]. Nat Commun. 2016;7(1):1–15. doi: 10.1038/ncomms12727
  • Zernecke A, Bidzhekov K, Özüyaman B, et al. CD73/ecto-5′-nucleotidase protects against vascular inflammation and neointima formation. Circulation. 2006;113(17):2120–2127. doi: 10.1161/CIRCULATIONAHA.105.595249
  • Ouyang C, Li J, Zheng X, et al. Deletion of Ulk1 inhibits neointima formation by enhancing KAT2A/GCN5-mediated acetylation of TUBA/α-tubulin in vivo. Autophagy. 2021;2021(12):1–18. doi: 10.1080/15548627.2021.1911018
  • An Y, Zhang Y, Li C, et al. Inhibitory effects of flavonoids from abelmoschus manihot flowers on triglyceride accumulation in 3T3-L1 adipocytes. Fitoterapia. 2011;82(4):595–600. doi: 10.1016/j.fitote.2011.01.010
  • López-Romero P, González MA, Callejas S, et al. Processing of agilent microRNA array data. BMC Res Notes. 2010;3(1):1–6. doi: 10.1186/1756-0500-3-18
  • Ouyang C, Mu J, Lu Q, et al. Autophagic degradation of KAT2A/GCN5 promotes directional migration of vascular smooth muscle cells by reducing TUBA/α-tubulin acetylation. Autophagy. 2020;16(10):1753–1770. doi: 10.1080/15548627.2019.1707488