644
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

UBE3C tunes autophagy via ATG4B ubiquitination

, , , , , , , , , & ORCID Icon show all
Pages 645-658 | Received 22 Sep 2022, Accepted 20 Dec 2023, Published online: 03 Jan 2024

References

  • Maruyama T, Noda NN. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot (Tokyo). 2017;71(1):72–78. PMID: 28901328. doi: 10.1038/ja.2017.104
  • Li M, Hou YF, Wang JS, et al. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem. 2011;286(9):7327–7338. PMID: WOS:000287737300049. doi: 10.1074/jbc.M110.199059
  • Skytte Rasmussen M, Mouilleron S, Kumar Shrestha B, et al. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy. 2017;13(5):834–853. PMID: 28287329. doi: 10.1080/15548627.2017.1287651
  • Tanida I, Sou YS, Ezaki J, et al. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3-and GABA(A) receptor-associated protein-phospholipid conjugates. J Biol Chem. 2004;279:36268–36276. PMID: WOS:000223453600015. doi: 10.1074/jbc.M401461200
  • Kauffman KJ, Yu S, Jin J, et al. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy. 2018;14(6):992–1010. PMID: 29458288. doi: 10.1080/15548627.2018.1437341
  • Weidberg H, Shvets E, Shpilka T, et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010;29(11):1792–1802. PMID: WOS:000278235100003. doi: 10.1038/emboj.2010.74
  • Pengo N, Agrotis A, Prak K, et al. A reversible phospho-switch mediated by ULK1 regulates the activity of autophagy protease ATG4B. Nat Commun. 2017;8(1):294. PMID: WOS:000408013400001. doi: 10.1038/s41467-017-00303-2.
  • Ni Z, He J, Wu Y, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14(4):685–701. PMID: 29165041. doi: 10.1080/15548627.2017.1407887
  • Qiao S, Dennis M, Song X, et al. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun. 2015;6(1):7014. PMID: 25916556. doi: 10.1038/ncomms8014
  • Zheng XP, Yang ZL, Gu QQ, et al. The protease activity of human ATG4B is regulated by reversible oxidative modification. Autophagy. 2020;16(10):1838–1850. PMID: WOS:000505449200001. doi: 10.1080/15548627.2019.1709763
  • Xie H, Qiang P, Wang Y, et al. Discovery and mechanism studies of a novel ATG4B inhibitor Ebselen by drug repurposing and its anti-colorectal cancer effects in mice. Cell Biosci. 2022;12(1):206. PMID: 36539845. doi: 10.1186/s13578-022-00944-x
  • Li YZ, Zhang YY, Wang L, et al. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy. 2017;13(7):1145–1160. PMID: WOS:000406244200005. doi: 10.1080/15548627.2017.1320467
  • Jo YK, Park NY, Park SJ, et al. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity. Oncotarget. 2016;7(35):57186–57196. PMID: WOS:000386911600098. doi: 10.18632/oncotarget.11083
  • Kuang E, Okumura CYM, Sheffy-Levin S, et al. Regulation of ATG4B stability by RNF5 limits basal levels of autophagy and influences susceptibility to bacterial infection. PLoS Genet. 2012;8(10):e1003007. PMID: WOS:000310528400031. doi: 10.1371/journal.pgen.1003007
  • Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004;1695(1–3):55–72. PMID: 15571809. doi: 10.1016/j.bbamcr.2004.09.019
  • Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–671. PMID: 19773779. doi: 10.1038/nrm2767
  • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009;78(1):477–513. PMID: 19489727. doi: 10.1146/annurev.biochem.78.081507.101607
  • Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–362. PMID: 18267068. doi: 10.1016/j.cell.2008.01.020
  • Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci. 2012;125(2):265–75. PMID: 22357968. doi: 10.1242/jcs.091280
  • Chastagner P, Israel A, Brou C. Itch/AIP4 mediates deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep. 2006;7:1147–1153. PMID: 17028573. doi: 10.1038/sj.embor.7400822
  • Al-Hakim AK, Zagorska A, Chapman L, et al. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J. 2008;411:249–260. PMID: 18254724 doi: 10.1042/BJ20080067
  • Nishikawa H, Ooka S, Sato K, et al. Mass spectrometric and mutational analyses reveal lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem. 2004;279(6):3916–24. PMID: 14638690. doi: 10.1074/jbc.M308540200
  • Hatakeyama S, Yada M, Matsumoto M, et al. U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem. 2001;276(35):33111–33120. PMID: WOS:000170746000097. doi: 10.1074/jbc.M102755200
  • Locke M, Toth JI, Petroski MD. Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation. Biochem J. 2014;459(1):205–16. PMID: 24417208. doi: 10.1042/BJ20120662
  • Li X, Elmira E, Rohondia S, et al. A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat. 2018;28:919–937. PMID: WOS:000452205500006. doi: 10.1080/13543776.2018.1549229
  • Michel MA, Elliott PR, Swatek KN, et al. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell. 2015;58(1):95–109. PMID: 25752577. doi: 10.1016/j.molcel.2015.01.042
  • Singh S, Sivaraman J. Crystal structure of HECT domain of UBE3C E3 ligase and its ubiquitination activity. Biochem J. 2020;477(5):905–923. PMID: 32039437. doi: 10.1042/BCJ20200027
  • Li M, Chen X, Ye QZ, et al. A high-throughput FRET-based assay for determination of Atg4 activity. Autophagy. 2012;8(3):401–412. PMID: WOS:000302555000011. doi: 10.4161/auto.18777
  • Xia F, Liu PQ, Li M. The regulatory factors and pathological roles of autophagy-related protein 4 in diverse diseases: recent research advances. Med Res Rev. 2021;41(3):1644–1675. PMID: WOS:000598258200001. doi: 10.1002/med.21772
  • Sarraf SA, Raman M, Guarani-Pereira V, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496(7445):372–6. PMID: 23503661. doi: 10.1038/nature12043
  • Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 2017;18:495–509. PMID: 28104734 doi: 10.15252/embr.201643309
  • Petroski MD, Deshaies RJ. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol Cell. 2003;11(6):1435–44. PMID: 12820958. doi: 10.1016/s1097-2765(03)00221-1
  • French ME, Koehler CF, Hunter T. Emerging functions of branched ubiquitin chains. Cell Discov 2021;7. PMID: WOS:000611530100001 10.1038/s41421-020-00237-y.
  • Chen YH, Huang TY, Lin YT, et al. VPS34 K29/K48 branched ubiquitination governed by UBE3C and TRABID regulates autophagy, proteostasis and liver metabolism. Nat Commun. 2021;12(1):1322. PMID: 33637724. doi: 10.1038/s41467-021-21715-1
  • Bauvy C, Meijer AJ, Codogno P. Assaying of Autophagic Protein Degradation. Method Enzymol. 2009;452:47–61. PMID: WOS:000263265400004. doi: 10.1016/S0076-6879(08)03604-5
  • Wang YT, Liu TY, Shen CH, et al. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep. 2022;38(8):110354. PMID: 35196483. doi: 10.1016/j.celrep.2022.110354
  • Wang J, Zhang J, Lee YM, et al. Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling. Nat Protoc. 2017;12(2):279–288. PMID: 28079880. doi: 10.1038/nprot.2016.160
  • Fu YY, Hong L, Xu JC, et al. Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy. 2019;15(2):295–311. PMID: WOS:000454087000008. doi: 10.1080/15548627.2018.1517073
  • Zhao Y, Sun X, Hu D, et al. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat Commun. 2019;10(1):1371. PMID: 30914652. doi: 10.1038/s41467-019-09291-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.