1,679
Views
18
CrossRef citations to date
0
Altmetric
Review

Drug-induced hyperlactatemia

, &
Pages 869-878 | Received 09 Jan 2017, Accepted 04 Apr 2017, Published online: 27 Apr 2017

References

  • Haas SA, Lange T, Saugel B, et al. Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients. Intensive Care Med. 2016;42:202–210.
  • Ingelfinger JR, Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371:2309–2319.
  • Rodrigo GJ, Rodrigo C. Elevated plasma lactate level associated with high dose inhaled albuterol therapy in acute severe asthma. Emerg Med J. 2005;22:404–408.
  • Suzuki K, Tanaka S, Uchida T, et al. Catecholamine release induces elevation in plasma lactate levels in patients undergoing adrenalectomy for pheochromocytoma. J Clin Anesth. 2014;26:616–622.
  • Tobin AE, Pellizzer A-M, Santamaria JD. Mechanisms by which systemic salbutamol increases ventilation. Respirology. 2006;11:182–187.
  • Phillips PJ, Vedig AE, Jones PL, et al. Metabolic and cardiovascular side effects of the beta 2-adrenoceptor agonists salbutamol and rimiterol. Br J Clin Pharmacol. 1980;9:483–491.
  • Dodda VR, Spiro P. Can albuterol be blamed for lactic acidosis? Respir Care. 2012;57:2115–2118.
  • Saxena R, Marais G. Salbutamol: beware of the paradox! BMJ Case Rep. 2010;2010:bcr0120102665.
  • Creagh-Brown BC, Ball J. An under-recognized complication of treatment of acute severe asthma. Am J Emerg Med. 2008;26:514.e1–514.e3.
  • Tobin A, Santamaria J. Respiratory failure precipitated by salbutamol. Intern Med J. 2005;35:199–200.
  • Mullins ME, Barnes BJ. Hyperosmolar metabolic acidosis and intravenous Lorazepam. N Engl J Med. 2002;347:857–858.
  • Miller MA, Forni A, Yogaratnam D. Propylene glycol-induced lactic acidosis in a patient receiving continuous infusion pentobarbital. Ann Pharmacother. 2008;42:1502–1506.
  • Cawley MJ. Short-term lorazepam infusion and concern for propylene glycol toxicity: case report and review. Pharmacotherapy. 2001;21:1140–1144.
  • Parker MG, Fraser GL, Watson DM, et al. Removal of propylene glycol and correction of increased osmolar gap by hemodialysis in a patient on high dose lorazepam infusion therapy. Intensive Care Med. 2002;28:81–84.
  • Zar T, Yusufzai I, Sullivan A, et al. Acute kidney injury, hyperosmolality and metabolic acidosis associated with lorazepam. Nat Clin Pract Nephrol. 2007;3:515–520.
  • Zosel A, Egelhoff E, Heard K. Severe lactic acidosis after an iatrogenic propylene glycol overdose. Pharmacotherapy. 2010;30:219–219.
  • Horinek EL, Kiser TH, Fish DN, et al. Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. Ann Pharmacother. 2009;43:1964–1971.
  • Arroliga AC, Shehab N, McCarthy K, et al. Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults. Crit Care Med. 2004;32:1709–1714.
  • Barnes BJ, Gerst C, Smith JR, et al. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.
  • al-khudhairi D. Autonomic reflexes and the cardiovascular effects of propylene glycol. Br J Anaesth. 1986;58:897–902.
  • Doenicke A, Nebauer AE, Hoernecke R, et al. Osmolalities of propylene glycol-containing drug formulations for parenteral use. Should propylene glycol be used as a solvent? Anesth Analg. 1992;75:431–435.
  • Wheless JW. Pediatric use of intravenous and intramuscular phenytoin: lessons learned. J Child Neurol. 1998;13(Suppl 1):S11–S14. discussion S30–S32.
  • Didwania A, Miller J, Kassel D, et al. Effect of intravenous lactated Ringer's solution infusion on the circulating lactate concentration: Part 3. Results of a prospective, randomized, double-blind, placebo-controlled trial. Crit Care Med. 1997;25:1851–1854.
  • Gardner A, Griffiths J. A case of type B lactic acidosis as a complication of chronic myelomonocytic leukaemia: a case report and review of the literature. J Med Case Rep. 2015;9:16.
  • Vail DM, Ogilvie GK, Fettman MJ, et al. Exacerbation of hyperlactatemia by infusion of lactated Ringer's solution in dogs with lymphoma. J Vet Intern Med. 1990;4:228–232.
  • Fimognari FL, Pastorelli R, Incalzi RA. Phenformin-induced lactic acidosis in an older diabetic patient: a recurrent drama (phenformin and lactic acidosis). Diabetes Care. 2006;29:950–951.
  • Crofford OB. Metformin. N Engl J Med. 1995;333:588–589.
  • Aschwanden C. Herbs for health, but how safe are they? Bull World Health Organ. 2001;79:691–692.
  • Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–554.
  • Kreisberg RA, Pennington LF, Boshell BR. Lactate turnover and gluconeogenesis in obesity. Effect of phenformin. Diabetes. 1970;19:64–69.
  • Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;CD002967.
  • Spiller HA, Sawyer TS. Toxicology of oral antidiabetic medications. Am J Health Syst Pharm. 2006;63:929–938.
  • Dell'Aglio DM, Perino LJ, Kazzi Z, et al. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med. 2009;54:818–823.
  • Dell'Aglio DM, Perino LJ, Todino JD, et al. Metformin overdose with a resultant serum pH of 6.59: survival without sequalae. J Emerg Med. 2010;39:e77–e80.
  • Kajbaf F, Lalau J-D. The prognostic value of blood pH and lactate and metformin concentrations in severe metformin-associated lactic acidosis. BMC Pharmacol Toxicol. 2013;14:22.
  • McNamara K, Isbister GK. Hyperlactataemia and clinical severity of acute metformin overdose. Intern Med J. 2015;45:402–408.
  • Ashall V, Dawes T. Metformin and lactic acidosis. Br J Anaesth. 2008;101:876–877.
  • Dichtwald S, Weinbroum AA, Sorkine P, et al. Metformin-associated lactic acidosis following acute kidney injury. Efficacious treatment with continuous renal replacement therapy. Diabet Med. 2012;29:245–250.
  • Biradar V, Moran JL, Peake SL, et al. Metformin-associated lactic acidosis (MALA): clinical profile and outcomes in patients admitted to the intensive care unit. Crit Care Resusc. 2010;12:191–195.
  • Bebarta VS, Pead J, Varney SM. Lacticemia after acute overdose of metformin in an adolescent managed without intravenous sodium bicarbonate or extracorporeal therapy. Pediatr Emerg Care. 2015;31:589–590.
  • Ansari RSH, Mady AF, Qutub HO, et al. Metformin-related acidosis in a woman while performing Haj: a conservative approach. Saudi J Kidney Dis Transpl. 2015;26:125–127.
  • Peters N, Jay N, Barraud D, et al. Metformin-associated lactic acidosis in an intensive care unit. Crit Care. 2008;12:R149.
  • Wang Z, Wu M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep. 2015;5:7949.
  • Djibré M, Pham T, Denis M, et al. Fatal lactic acidosis associated with linezolid therapy. Infection. 2015;43:125–126.
  • Barnhill AE, Brewer MT, Carlson SA. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother. 2012;56:4046–4051.
  • Palenzuela L, Hirano M. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis. 2015;9:16.
  • Protti A, Ronchi D, Bassi G, et al. Changes in whole-body oxygen consumption and skeletal muscle mitochondria during linezolid-induced lactic acidosis. Crit Care Med. 2016;7:e579–e582.
  • Im JH, Baek JH, Kwon HY, et al. Incidence and risk factors of linezolid-induced lactic acidosis. Int J Infect Dis. 2015;31:47–52.
  • Brier ME, Stalker DJ, Aronoff GR, et al. Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob Agents Chemother. 2003;47:2775–2780.
  • Contou D, Fichet J, Grimaldi D, et al. Early life-threatening lactic acidosis following a single infusion of linezolid. Int J Antimicrob Agents. 2011;38:84–85.
  • Del Pozo JL, Fernández-Ros N, Sáez E, et al. Linezolid-induced lactic acidosis in two liver transplant patients with the mitochondrial DNA A2706G polymorphism. Antimicrob Agents Chemother. 2014;58:4227–4229.
  • Cope TE, McFarland R, Schaefer A. Rapid-onset, linezolid-induced lactic acidosis in MELAS. Mitochondrion. 2011;11:992–993.
  • Fiaccadori E. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit Care Med. 2004;32:2437–2442.
  • Sawyer AJ, Haley HL, Baty SR, et al. Linezolid-induced lactic acidosis corrected with sustained low-efficiency dialysis: a case report. Am J Kidney Dis. 2014;64:457–459.
  • Tolomeo M, Mancuso S, Todaro M, et al. Mitochondrial disruption and apoptosis in lymphocytes of an HIV infected patient affected by lactic acidosis after treatment with highly active antiretroviral therapy. J Clin Pathol. 2003;56:147–151.
  • Claessens Y-E, Chiche J-D, Mira J-P, et al. Bench-to-bedside review: severe lactic acidosis in HIV patients treated with nucleoside analogue reverse transcriptase inhibitors. Crit Care. 2003;7:226–232.
  • Bonnet F, Bonarek M, Morlat P, et al. Risk factors for lactic acidosis in HIV-infected patients treated with nucleoside reverse-transcriptase inhibitors: a case-control study. Clin Infect Dis. 2003;36:1324–1328.
  • Dragovic G, Jevtovic D. The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients. Biomed Pharmacother. 2012;66:308–311.
  • Coghlan M. Symptomatic lactic acidosis in hospitalized antiretroviral-treated patients with human immunodeficiency virus infection: a report of 12 cases. Clin Infect Dis. 2001;33:1914–1921.
  • Miller KD. Lactic acidosis and hepatic steatosis associated with use of stavudine: report of four cases. Ann Intern Med. 2000;133:192.
  • Claessens Y-E, Cariou A, Monchi M, et al. Detecting life-threatening lactic acidosis related to nucleoside-analog treatment of human immunodeficiency virus-infected patients, and treatment with l-carnitine. Crit Care Med. 2003;31:1042–1047.
  • Krajčová A, Waldauf P, Anděl M, et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19:1383.
  • Vernooy K, Delhaas T, Cremer OL, et al. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006;3:131–137.
  • Vanlander AV, Okun JG, de Jaeger A, et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology. 2015;122:343–352.
  • Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med. 2000;28:172–177.
  • Wolf A, Weir P, Segar P, et al. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001;357:606–607.
  • Rison RA, Ko DY. Isolated fatty liver from prolonged propofol use in a pediatric patient with refractory status epilepticus. Clin Neurol Neurosurg. 2009;111:558–561.
  • Beasley DMG, Glass WI. Cyanide poisoning: pathophysiology and treatment recommendations. Occup Med (Lond). 1998;48:427–431.
  • Huzar TF, George T, Cross JM. Carbon monoxide and cyanide toxicity: etiology, pathophysiology and treatment in inhalation injury. Expert Rev Resp Med. 2013;7:159–170.
  • Udeh CI, Ting M, Arango M, et al. Delayed presentation of nitroprusside-induced cyanide toxicity. Ann Thorac Surg. 2015;99:1432–1434.
  • Belani K, Hottinger D, Kozhimannil T, et al. Sodium nitroprusside in 2014: a clinical concepts review. J Anaesthesiol Clin Pharmacol. 2014;30:462–471.
  • Pasch T, Schulz V, Hoppelshäuser G. Nitroprusside-induced formation of cyanide and its detoxication with thiosulfate during deliberate hypotension. J Cardiovasc Pharmacol. 1983;5:77–85.
  • Hall V, Guest J. Sodium nitroprusside-induced cyanide intoxication and prevention with sodium thiosulfate prophylaxis. Am J Crit Care. 1992;1:19–25.
  • Curry SC. Prevention of fetal and maternal cyanide toxicity from nitroprusside with coinfusion of sodium thiosulfate in gravid ewes. Anesth Analg. 1997;8:1121–1126.
  • Meyer S, Baghai A, Sailer NL, et al. Lactic acidosis caused by sodium nitroprusside in a newborn with congenital heart disease. Eur J Pediatr. 2005;164:253–254.
  • Huang X, Hou L, Tang J, et al. Central nervous system toxicity of sodium nitroprusside in treatment of patients with aortic dissection. J Huazhong Univ Sci Technol Med Sci. 2012;32:927–930.
  • Anderson CM, Norquist BA, Vesce S, et al. Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death. J Neurosci. 2002;22:9203–9209.
  • Cereda C, Berger MM, Rossetti AO. Bowel ischemia: a rare complication of thiopental treatment for status epilepticus. Neurocrit Care. 2008;10:355–358.
  • Alluin A, Jezequel J, Gauthier N, et al. Cas d’une intoxication sévère à l’acide valproïque: intérêt d’un traitement par épuration extrarénale combiné à la l-carnitine. Ann Fr Anesth Reanim. 2011;30:752–754.
  • van den Broek MPH, Sikma MA, Ververs TF, et al. Severe valproic acid intoxication: case study on the unbound fraction and the applicability of extracorporeal elimination. Eur J Emerg Med. 2009;16:330–332.
  • Hroudova J, Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett. 2010;31:336–342.
  • Komulainen T, Lodge T, Hinttala RB, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology. 2015;331:47–56.
  • Luís PBM, Ruiter JPN, Aires CCP, et al. Valproic acid metabolites inhibit dihydrolipoyl dehydrogenase activity leading to impaired 2-oxoglutarate-driven oxidative phosphorylation. Biochim Biophys Acta (BBA) – Bioenerg. 2007;1767:1126–1133.
  • Gugler R, Mueller G. Plasma protein binding of valproic acid in healthy subjects and in patients with renal disease. Br J Clin Pharmacol. 1978;5:441–446.
  • Thanacoody RHK. Extracorporeal elimination in acute valproic acid poisoning. Clin Toxicol. 2009;47:609–616.
  • Ghannoum M, Laliberté M, Nolin TD, et al. Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin Toxicol. 2015;53:454–465.
  • Iragavarapu C, Gupta T, Chugh SS, et al. Type B lactic acidosis associated with venlafaxine overdose. Am J Ther. 2016;23:e1082–e1084.
  • Bernard L. Serotonin syndrome after concomitant treatment with linezolid and citalopram. Clin Infect Dis. 2003;36:1197.
  • O'Malley GF. Emergency department management of the salicylate-poisoned patient. Emerg Med Clin N Am. 2007;25:333–346.
  • Gutknecht J. Salicylates and proton transport through lipid bilayer membranes: a model for salicylate-induced uncoupling and swelling in mitochondria. J Membr Biol. 1990;115:253–260.
  • Porcelli AM, Ghelli A, Zanna C, et al. pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun. 2005;326:799–804.
  • Saeedi S, Rocher F, Bonmort J, et al. Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus. J Exp Bot. 2013;64:1829–1836.
  • Petrescu I, Tarba C. Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochim Biophys Acta. 1997;1318:385–394.
  • You K. Salicylate and mitochondrial injury in Reye’s syndrome. Science. 1983;221:163–165.
  • American College of Medical Toxicology. Guidance document: management priorities in salicylate toxicity. J Med Toxicol. 2015;11:149–152.
  • Juurlink DN, Gosselin S, Kielstein JT, et al. Extracorporeal treatment for salicylate poisoning: systematic review and recommendations from the EXTRIP Workgroup. Ann Emerg Med. 2015;66:165–181.
  • Sandberg Y, Rood PPM, Russcher H, et al. Falsely elevated lactate in severe ethylene glycol intoxication. Neth J Med. 2010;68:320–323.
  • Pernet P, Bénéteau-Burnat B, Vaubourdolle M, et al. False elevation of blood lactate reveals ethylene glycol poisoning. Am J Emerg Med. 2009;27:132.e1–132.e2.
  • Brindley PG, Butler MS, Cembrowski G, et al. Falsely elevated point-of-care lactate measurement after ingestion of ethylene glycol. CMAJ. 2007;176:1097–1099.
  • Verelst S, Vermeersch P, Desmet K. Ethylene glycol poisoning presenting with a falsely elevated lactate level. Clin Toxicol. 2009;47:236–238.
  • Woo MY, Greenway DC, Nadler SP, et al. Artifactual elevation of lactate in ethylene glycol poisoning. J Emerg Med. 2003;25:289–293.
  • Tintu A, Rouwet E, Russcher H. Interference of ethylene glycol with (l)-lactate measurement is assay-dependent. Ann Clin Biochem. 2013;50:70–72.
  • Chaudhry SD, Pandurangan M, Pinnell AE. Lactate gap and ethylene glycol poisoning. Eur J Anaesthesiol. 2008;25:511–513.
  • Manini AF, Hoffman RS, McMartin KE, et al. Relationship between serum glycolate and falsely elevated lactate in severe ethylene glycol poisoning. J Anal Toxicol. 2009;33:174–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.