261
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Optimization and characterization studies on the production of bio-diesel from WSO using carbon catalyst derived from coconut meal residue

&
Pages 9864-9879 | Received 31 Jan 2019, Accepted 16 Oct 2019, Published online: 28 Oct 2019

References

  • Abdelrahman, B. F., M. A. Akram, and H. A. Marwa. 2018. Optimization of methyl esters production from non-edible oils using activated carbon supported potassium hydroxide as a solid base catalyst. Arab Journal of Basic and Applied Sciences 25 (2):56–65. doi:10.1080/25765299.2018.1449414.
  • Abubakar, H. G., A. S. Abdulkareem, A. Jimoh., O. D. Agbajelola, J. O. Okafor, and E. A. Afolabi. 2016. Optimization of biodiesel production from waste cooking oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (16):2355–236. doi:10.1080/15567036.2015.1040899.
  • Al-Jammal, N., Z. Al-Hamamre, and M. Alnaief. 2016. Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renewable Energy 93:449–59. doi:10.1016/j.renene.2016.03.018.
  • Atapour, M., H. R. Kariminia, and P. M. Moslehabadi. 2014. Optimization of biodiesel production by alkali-catalyzed transesterification of used frying oil. Process Safety and Environmental Protection 92 (2):179–85. doi:10.1016/j.psep.2012.12.005.
  • Banani, R., S. Youssef, M. Bezzarga, and M. Abderrabba. 2015. Waste frying oil with high levels of free fatty acids as one of the prominent sources of biodiesel production. Journal of Materials and Environmental Science 6 (4):1178–85.
  • Bharadwaj, A. S., M. Singh, S. Niju, K. M. S. Begum, and N. Anantharaman. 2019. Biodiesel production from rubber seed oil using calcium oxide derived from eggshell as catalyst–optimization and modeling studies. Green Processing and Synthesis 8 (1):430–42. doi:10.1515/gps-2019-0011.
  • Bharadwaj, A. V. S. L. S., S. Niju, B. K. M. Meera, and N. Anantharaman. 2018. Optimization and modelling of biodiesel production using fluorite as a heterogeneous catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (15):1862–78. doi:10.1080/15567036.2018.1549165.
  • Boro, J., L. J. Konwar, and D. Deka. 2014. Transesterification of non-edible feedstock with lithium incorporated egg shell derived CaO for biodiesel production. Fuel Processing Technology 122:72–78. doi:10.1016/j.fuproc.2014.01.022.
  • Chanchaochai, P., P. Boonnoun, N. Laosiripojana, M. Goto, B. Jongsomjit, J. Panpranot, and A. Shotipruk. 2013. Transesterification of palm oil at near-critical conditions using sulfonated carbon-based acid catalyst. Chemical Engineering Communications 200 (11):1542–52. doi:10.1080/00986445.2012.749249.
  • Chouhan, A. S., and A. K. Sarma. 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15 (9):4378–99. doi:10.1016/j.rser.2011.07.112.
  • Dawodu, F. A., O. Ayodele, J. Xin, S. Zhang, and D. Yan. 2014. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Applied Energy 114:819–26. doi:10.1016/j.apenergy.2013.10.004.
  • Dhawane, S. H., A. P. Bora, T. Kumar, and G. Halder. 2017. Parametric optimization of biodiesel synthesis from rubber seed oil using iron doped carbon catalyst by Taguchi approach. Renewable Energy 105:616–24. doi:10.1016/j.renene.2016.12.096.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2015. Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil. Energy Conversion and Management 100:277–87. doi:10.1016/j.enconman.2015.04.083.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2016a. Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy 89:506–14. doi:10.1016/j.renene.2015.12.027.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2016b. Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel. Energy Conversion and Management 122:310–20. doi:10.1016/j.enconman.2016.06.005.
  • Fu, X., D. Li, J. Chen, Y. Zhang, W. Huang, Y. Zhu, and C. Zhang. 2013. A microalgae residue based carbon solid acid catalyst for biodiesel production. Bioresource Technology 146:767–70. doi:10.1016/j.biortech.2013.07.117.
  • Fu, X., D. Li, J Chen, Y Zhang, W Huang, Y Zhu, and C. Zhang. 2013. A microalgae residue based carbon solid acid catalyst for biodiesel production. Bioresource Technology 146:767-770. doi: 10.1016/j.biortech.2013.07.117.
  • Hara, M. 2009. Environmentally benign production of biodiesel using heterogeneous catalysts. ChemSusChem: Chemistry & Sustainability Energy & Materials 2 (2):129–35. doi:10.1002/cssc.v2:2.
  • Hara, M. 2010. Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid brønsted acid catalyst. Topics in Catalysis 53 (11–12):805–10. doi:10.1007/s11244-010-9458-z.
  • Huang, M., J. Luo, Z. Fang, and H. Li. 2016. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub-and super-critical ethanol. Applied Catalysis B: Environmental 190:103–14. doi:10.1016/j.apcatb.2016.02.069.
  • Intarapong, P., S. Iangthanarat, A. Luengnaruemitchai, and S. Jai-In. 2014. Biodiesel production from palm oil using potassium hydroxide loaded on ZrO2 catalyst in a batch reactor. Chiang Mai Journal of Science 41 (1):128–37.
  • Jain, S., and M. P. Sharma. 2010. Prospects of biodiesel from Jatropha in India: A review. Renewable and Sustainable Energy Reviews 14 (2):763–71. doi:10.1016/j.rser.2009.10.005.
  • Karmee, S. K., and A. Chadha. 2005. Preparation of biodiesel from crude oil of pongamia pinnata. Bioresource Technology 96 (13):1425-1429.
  • Konwar, L. J., J. Boro, and D. Deka. 2018. Activated carbon supported cao from waste shells as a catalyst for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (6):601–07. doi:10.1080/15567036.2012.
  • Konwar, L. J., J. Warna, P. Mäki-Arvela, N. Kumar, and J. P. Mikkola. 2016. Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel 166:1–11. doi:10.1016/j.fuel.2015.10.102.
  • Narasimharao, K., A. Lee, and K. Wilson. 2007. Catalysts in production of biodiesel: A review. Journal of Biobased Materials and Bioenergy 1 (1):19–30.
  • Ng, S. P., C. P. Tan, O. M. Lai, K. Long, and H. Mirhosseini. 2010. Extraction and characterization of dietary fiber from coconut residue. Journal of Food, Agriculture and Environment 8 (2):172–77.
  • Niju, S., K. M. M. Sheriffa Begum, and N. Anantharaman. 2015. Preparation of biodiesel from waste frying oil using a green and renewable solid catalyst derived from egg shell. Environmental Progress and Sustainable Energy 34 (1):248–54. doi:10.1002/ep.11939.
  • Openshaw, K. 2000. A review of jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy 19 (1):1-15.
  • Patil, P. D., and S. Deng. 2009. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 88 (7):1302–06. doi:10.1016/j.fuel.2009.01.016.
  • Ramachandran, K., P. Sivakumar, T. Suganya, and S. Renganathan. 2011. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology 102 (15):7289–93. doi:10.1016/j.biortech.2011.04.100.
  • Refaat, A. A. 2009. Correlation between the chemical structure of biodiesel and its physical properties. International Journal of Environmental Science and Technology 6 (4):677–94. doi:10.1007/BF03326109.
  • Refaat, A. A., N. K. Attia, H. A. Sibak, S. T. El Sheltawy, and G. I. ElDiwani. 2008. Production optimization and quality assessment of biodiesel from waste vegetable oil. International Journal of Environmental Science and Technology 5 (1):75–82. doi:10.1007/BF03325999.
  • Sanjay Gandhi, B., S. Sam Chelladurai, and D. Senthil Kumaran. 2011. Process optimization for biodiesel synthesis from Jatropha Curcas oil. Distributed Generation and Alternative Energy Journal 26 (4):6–16. doi:10.1080/21563306.2011.10462201.
  • Sasikumar, C., K. Balamurugan, S. Rajendran, and S. Naveenkumar. 2016. Process parameter optimization in jatropha methyl ester yield using taguchi technique. Materials and Manufacturing Processes 31 (6):701–06. doi:10.1080/10426914.2015.1048473.
  • Savaliya, M. L., and B. Z. Dholakiya. 2015. A simpler and highly efficient protocol for the preparation of biodiesel from soap stock oil using a BBSA catalyst. RSC Advances 5 (91):74416–24. doi:10.1039/C5RA13422F.
  • Semwal, S., A. K. Arora, R. P. Badoni, and D. K. Tuli. 2011. Biodiesel production using heterogeneous catalysts. Bioresource Technology 102 (3):2151–61. doi:10.1016/j.biortech.2010.10.080.
  • Sivakumar, P., T. Suganya, and S. Renganathan. 2013. Studies on a customized carbon catalyst in biodiesel production from waste sunflower oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (7):595–603. The corrections are included in the modified manuscript (Page no.7 & line nos. 207-208). doi:10.1080/15567036.2010.504944.
  • Su, F., and Y. Guo. 2014. Advancements in solid acid catalysts for biodiesel production. Green Chemistry 16 (6):2934–57. doi:10.1039/C3GC42333F.
  • Suganuma, S., K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, and M. Hara. 2008. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society 130 (38):12787–93. doi:10.1021/ja803983h.
  • Sulaiman, S., A. A. Aziz, and M. K. Aroua. 2013. Reactive extraction of solid coconut waste to produce biodiesel. Journal of the Taiwan Institute of Chemical Engineers 44 (2):233–38. doi:10.1016/j.jtice.2012.10.008.
  • Sulaiman, S., and M. H. M. Amin. 2016. Fish bone-catalyzed methanolysis of waste cooking oil. Bulletin of Chemical Reaction Engineering & Catalysis 11 (2):245–49. doi:10.9767/bcrec.11.2.556.245-249.
  • Sulaiman, S., and N. I. F. Ruslan. 2017. A heterogeneous catalyst from a mixture of coconut waste and eggshells for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (2):154–59. doi:10.1080/15567036.2016.1205683.
  • Tamborini, L. H., M. E. Casco, M. P. Militello, J. Silvestre-Albero, C. A. Barbero, and D. F. Acevedo. 2016. Sulfonated porous carbon catalysts for biodiesel production: clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Processing Technology 149:209-217.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, and N. S. A. Zauzi. 2017. Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO. Renewable Energy 114:437–47. doi:10.1016/j.renene.2017.07.024.
  • Thangarasu, V., B. Balaji, and A. Ramanathan. 2019. Experimental investigation of tribo-corrosion and engine characteristics of Aegle Marmelos Correa biodiesel and its diesel blends on direct injection diesel engine. Energy 171:879–92. doi:10.1016/j.energy.2019.01.079.
  • Thangarasu, V., and R. Anand. 2019. Physicochemical fuel properties and tribological behavior of aegle marmelos correa biodiesel. In Advances in eco-fuels for a sustainable environment, 309–36. Woodhead Publishing.
  • Thushari, I., and S. Babel. 2018. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology 248:199–203. doi:10.1016/j.biortech.2017.06.106.
  • Weidong, L., M. A. Alam, W. Chaosheng, W. Zhongming, and H. Wei. 2019. Enhanced deacidification of acidic oil catalyzed by sulfonated granular activated carbon using microwave irradiation for biodiesel production. Chemical Engineering and Processing-Process Intensification 135:168–74. doi:10.1016/j.cep.2018.10.019.
  • Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology 90 (3):229–40. doi:10.1016/S0960-8524(03)00150-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.