683
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Biodiesel as alternative additive fuel for diesel engines: An experimental and theoretical investigation on emissions and performance characteristics

ORCID Icon & ORCID Icon
Pages 10741-10763 | Received 23 Feb 2020, Accepted 19 May 2020, Published online: 16 Jun 2020

References

  • Agarwal, A. K., T. Gupta, P. C. Shukla, and A. Dhar. 2015. Particulate emissions from biodiesel fuelled CI engines. Energy Conversion and Management 94:311–30. doi:10.1016/j.enconman.2014.12.094.
  • Al-Dawody, M. F., A. A. Jazie, and H. Abdulkadhim Abbas. 2019. Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine. Alexandria Engineering Journal 58:9–17. doi:10.1016/j.aej.2018.05.009.
  • An, H., W. M. Yang, S. K. Chou, and K. J. Chua. 2012. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions. Applied Energy 99:363–71. doi:10.1016/j.apenergy.2012.05.049.
  • Anastopoulos, G., E. Lois, D. Karonis, S. Kalligeros, and F. Zannikos. 2005. Impact of oxygen and nitrogen compounds on the lubrication properties of low sulfur diesel fuels. Energy 30:415–26. doi:10.1016/j.energy.2004.04.026.
  • Anis, S., and G. N. Budiandono. 2019. Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances. Renewable Energy 140:274–80. doi:10.1016/j.renene.2019.03.062.
  • Asadi, A., Kadijani, O. N., Doranehgard, M. H., Bozorg, M. V., Xiong, Q., Shadloo, M. S., Li, L. K. B. 2020. Numerical study on the application of biodiesel and bioethanol in a multiple injection diesel engine. Renewable Energy 150:1019–29. doi:10.1016/j.renene.2019.11.088.
  • Atabani, A. E., A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 16:2070–93. doi:10.1016/j.rser.2012.01.003.
  • Azad, K., and M. Rasul. 2019. Performance and combustion analysis of diesel engine fueled with grape seed and waste cooking biodiesel. Energy Procedia 160:340–47. doi:10.1016/j.egypro.2019.02.166.
  • Ban-Weiss, G. A., J. Y. Chen, B. A. Buchholz, and R. W. Dibble. 2007. A numerical investigation into the anomalous slight NOx increase when burning biodiesel: A new (old) theory. Fuel Processing Technology 88:659–67. doi:10.1016/j.fuproc.2007.01.007.
  • Bejan, A., G. Tsatsaronis, and M. Moran. 1996. Thermal design and optimization. New York, NY: John Wiley&Sons Inc.
  • Bunce, M., Snyder, D., Adi, G., Hall, C., Koehler, J., Davila, B., Kumar, S., Garimella, P., Stanton, D., Shaver, G. 2011. Optimization of soy-biodiesel combustion in a modern diesel engine. Fuel 90:2560–70. doi:10.1016/j.fuel.2010.09.024.
  • Chaudhary, V., and R. Gakkhar. 2019. Exergy based performance comparison of DI diesel engine fuelled with WCO15 and NEEM15 biodiesel. Environmental Progress and Sustainable Energy 39(3): 1–8. doi:10.1002/ep.13363
  • Demirbas, A. 2008. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel 87:1743–48. doi:10.1016/j.fuel.2007.08.007.
  • Demirbaş, A. 1997. Calculation of higher heating values of biomass fuels. Fuel 76 (5):431–34. doi:10.1016/S0016-2361(97)85520-2.
  • Demirbaş, A. 1998. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77 (9/10):1117–20. doi:10.1016/S0016-2361(97)00289-5.
  • Devarajan, Y., N. Beemkumar, S. Ganesan, and T. Arunkumar. 2020. “An experimental study on the influence of an oxygenated additive in diesel engine fuelled with neat papaya seed biodiesel/diesel blends.” Fuel 268. doi: 10.1016/j.fuel.2020.117254.
  • Dhadad, H. A., M. A. Abdulhadi, E. M. Alfayyadh, and T. Megaritis. 2014. An investigation of the relation between combustion phase and emissions of ULSD & RME biodiesel with a common-rail HSDI diesel engine. In ASME 2014 12th Biennial conference on engineering systems design and analysis, Copenhagen, Denmark.
  • Dimitriou, P., T. Tsujimura, and Y. Suzuki. 2019. Adopting biodiesel as an indirect way to reduce the NOx emission of a hydrogen fumigated dual-fuel engine. Fuel 244:324–34. doi:10.1016/j.fuel.2019.02.010.
  • Dincer, I., and M. A. Rosen. 2007. Exergy, energy, environment and sustainable development. 2nd ed. Oxford, UK: Elsevier.
  • Dorado, M. P., E. Ballesteros, J. M. Arnal, J. Gómez, and F. J. López. 2003. Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82 (11):1311–15. doi:10.1016/S0016-2361(03)00034-6.
  • Dunbar, W. R., and N. Lior. 1994. Sources of combustion irreversibility. Combustion Science and Technology 103:41–61. doi:10.1080/00102209408907687.
  • Dwivedi, G., M. P. Sharma, P. Verma, and P. Kumar. 2018. Engine performance using waste cooking biodiesel and its blends with kerosene and ethanol. Materials Today: Proceedings 5:22955–62.
  • El-Adawy, M., M. El-kasaby, and Y. A. Eldrainy. 2018. Performance characteristics of a supercharged variable compression ratio diesel engine fueled by biodiesel blends. Alexandria Engineering Journal 57:3473–82. doi:10.1016/j.aej.2018.07.015.
  • Fayad, M. A. 2020. Effect of renewable fuel and injection strategies on combustion characteristics and gaseous emissions in diesel engines. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 42 (4):460–70. doi:10.1080/15567036.2019.1587091.
  • Fazal, M. A., A. S. M. A. Haseeb, and H. H. Masjuki. 2010. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Processing Technology 91:1308–15. doi:10.1016/j.fuproc.2010.04.016.
  • Fen Lin, Y., Y. ping, G. Wu, and C. T. Chang. 2007. Combustion characteristics of waste-oil produced biodiesel/diesel fuel blends. Fuel 86:1772–80. doi:10.1016/j.fuel.2007.01.012.
  • Fernando, S., C. Hall, and S. Jha. 2006. NOx reduction from biodiesel fuels. Energy and Fuels 20:376–82. doi:10.1021/ef050202m.
  • Förtsch, D. 2019. An engineering approach for estimating the formation of nitric oxide from fuel-nitrogen. Chemical Engineering and Technology 42 (11):2428–33. doi:10.1002/ceat.201800449.
  • Gabiña, G., L. Martin, O. C. Basurko, M. Clemente, S. Aldekoa, and Z. Uriondo. 2016. Waste oil-based alternative fuels for marine diesel engines. Fuel Processing Technology 153:28–36. doi:10.1016/j.fuproc.2016.07.024.
  • García Valladolid, P., P. Tunestål, J. Monsalve-Serrano, A. García, and J. Hyvönen. 2017. Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Conversion and Management 149:192–205. doi:10.1016/j.enconman.2017.07.023.
  • Geng, L., Y. Chen, X. Chen, C. fon, and F. Lee. 2019. Study on combustion characteristics and particulate emissions of a common-rail diesel engine fueled with n-butanol and waste cooking oil blends. Journal of the Energy Institute 92:438–49. doi:10.1016/j.joei.2018.05.004.
  • Ghadikolaei, M. A., C. S. Cheung, and K. F. Yung. 2018. Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration. Energy 157:258–69. doi:10.1016/j.energy.2018.05.164.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. 2nd ed. Singapore: McGraw-Hill, Inc.
  • Hirkude, J., V. Belokar, and J. Randhir. 2018. Effect of compression ratio, injection pressure and injection timing on performance and smoke emissions of ci engine fuelled with waste fried oil methyl esters–diesel blend. Materials Today: Proceedings 5:1563–70.
  • Hosseini, S. H., A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan. 2017. Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine. Energy 124:543–52. doi:10.1016/j.energy.2017.02.109.
  • Hosseinzadeh-Bandbafha, H., Khalife, E., Tabataba, M., Aghbashlo,  M., Khanali, M., Mohammadi, P., Shojaei, T. R., Soltanian. 2019. Effects of aqueous carbon nanoparticles as a novel nanoadditive in water-emulsified diesel/biodiesel blends on performance and emissions parameters of a diesel engine. Energy Conversion and Management 196:1153–66. doi:10.1016/j.enconman.2019.06.077.
  • Hosseinzadeh-Bandbafha, H., M. Tabatabaei, M. Aghbashlo, M. Khanali, and A. Demirbas. 2018. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management 174:579–614. doi:10.1016/j.enconman.2018.08.050.
  • Jung, H., D. B. Kittelson, and M. R. Zachariah. 2006. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation. Environmental Science and Technology 40 (16):4949–56. doi:10.1021/es0515452.
  • Kandasamy, M., and D. Senthilkumar. 2020. Combustion and emission behaviour of Honge biofuel in a thermal barrier coated diesel engine suitable for agriculture. In Lecture notes in mechanical engineering, 121–27. Singapore: Springer.
  • Karmakar, R., A. Rajor, K. Kundu, and N. Kumar. 2020. A comparative study of the fuel characteristics between algal biodiesel and petro-diesel. In Sadhan Kumar Ghosh, Ramakrishna Sen, H. N. Chanakya, Agamuthu Pariatamby (eds.), Bioresource utilization and bioprocess, 49–55. Singapore: Springer Singapore.
  • Kathirvelu, B., S. Subramanian, N. Govindan, and S. Santhanam. 2017. Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine. Sustainable Environment Research 27:283–90. doi:10.1016/j.serj.2017.06.004.
  • Kaya, C., O. Sert, H. Elçiçek, Z. Aydın, and G. Kökkülünk. 2019. The investigation of improvement with tall oil fatty acid of negative effects through diesel oil mixed with lubricating oil in marine diesel generators. In III. Global conference on innovation in marine technology and the future of maritime transportation, 462–72. UCTEA Turkish Chamber of Marine Marine Engineers
  • Kittelson, D. B. 1998. Engines and nanoparticles: A review. Journal of Aerosol Science 29 (5–6):575–88. doi:10.1016/S0021-8502(97)10037-4.
  • Knothe, G. 2005. The lubricity of biodiesel. SAE Technical Papers. United States.
  • Kotas, T. J. 1995. The exergy method of thermal plant analysis. Florida: Krieger Publishing Company.
  • Kumar, S., P. Dinesha, and M. A. Rosen. 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 185:1163–73. doi:10.1016/j.energy.2019.07.124.
  • Lin, C. Y. 2013. Strategies for promoting biodiesel use in marine vessels. Marine Policy 40:84–90. doi:10.1016/j.marpol.2013.01.003.
  • Lin, C. Y., and H. A. Lin. 2006. Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process. Fuel 85:298–305. doi:10.1016/j.fuel.2005.05.018.
  • Liu, Z., F. Li, J. Shen, and H. Wang. 2019. Effect of oxidation of Jatropha curcas-derived biodiesel on its lubricating properties. Energy for Sustainable Development 52:33–39. doi:10.1016/j.esd.2019.06.003.
  • Mahfouz, A., M. S. Gad, A. El Fatih, and A. Emara. 2018. Comparative study of combustion characteristics and exhaust emissions of waste cooking-diesel oil blends. Ain Shams Engineering Journal 9:3123–34. doi:10.1016/j.asej.2018.03.004.
  • Man, X. J., C. S. Cheung, Z. Ning, L. Wei, and Z. H. Huang. 2016. Influence of engine load and speed on regulated and unregulated emissions of a diesel engine fueled with diesel fuel blended with waste cooking oil biodiesel. Fuel 180:41–49. doi:10.1016/j.fuel.2016.04.007.
  • Meisami, F., H. Ajam, and M. Tabasizadeh. 2019. Effect of speed and load on exergetic parameters of a diesel engine fueled with diesel and biodiesel blends. Environmental Progress and Sustainable Energy 38 (2):534–41. doi:10.1002/ep.12906.
  • Misra, R. D., and M. S. Murthy. 2011. Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine – A review. Renewable and Sustainable Energy Reviews 15:2413–22. doi:10.1016/j.rser.2011.02.023.
  • Mittelbach, M., and P. Tritthart. 1988. Diesel fuel derived from vegetable oils, III. Emission tests using methyl esters of used frying oil. Journal of the American Oil Chemists’ Society 65 (7):1185–87. doi:10.1007/BF02660579.
  • Mohd Noor, C. W., M. M. Noor, and R. Mamat. 2018. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renewable and Sustainable Energy Reviews 94:127–42. doi:10.1016/j.rser.2018.05.031.
  • Murillo, S., J. L. Míguez, J. Porteiro, E. Granada, and J. C. Morán. 2007. Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel 86:1765–71. doi:10.1016/j.fuel.2006.11.031.
  • Najafi, G. 2018. Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends. Fuel 212:668–78. doi:10.1016/j.fuel.2017.10.001.
  • Nayyar, P. 2010. The use of biodiesel fuels in the U.S. marine industry.
  • Nguyen, T., M. H. Pham, and T. Le Anh. 2020. Spray, combustion, performance and emission characteristics of a common rail diesel engine fueled by fish-oil biodiesel blends. Fuel 269. doi: 10.1016/j.fuel.2020.117108.
  • Oliveira, L. E., and M. L. C. P. Da Silva. 2013. Comparative study of calorific value of rapeseed, soybean, jatropha curcas and crambe biodiesel. Renewable Energy and Power Quality Journal 1 (11):679–82. doi:10.24084/repqj11.411.
  • Örs, I., S. Sarıkoç, A. E. Atabani, S. Ünalan, and S. O. Akansu. 2018. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 234:177–88. doi:10.1016/j.fuel.2018.07.024.
  • Özener, O., L. Yüksek, A. T. Ergenç, and M. Özkan. 2014. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 115:875–83. doi:10.1016/j.fuel.2012.10.081.
  • Patel, C., Chandra, K., Hwang, J., Agarwal, R. A., Gupta, N., Bae, C., Gupta, T., Agarwal, A.K. 2019. Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels. Fuel 236:1366–76. doi:10.1016/j.fuel.2018.08.137.
  • Peirce, D. M., N. S. I. Alozie, D. W. Hatherill, and L. C. Ganippa. 2013. Premixed burn fraction: Its relation to the variation in NOx emissions between petro- and biodiesel. Energy and Fuels 27:3838–52. doi:10.1021/ef4006719.
  • Pulkrabek, W. W. 2016. Engineering fundamentals of the international combustion engine. 1st ed. İzmir: İzmir Güven Kitabevi.
  • Puškár, M., M. Kopas, D. Puškár, J. Lumnitzer, and E. Faltinová. 2018. Method for reduction of the NOx emissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion. Marine Pollution Bulletin 127:752–60. doi:10.1016/j.marpolbul.2017.08.031.
  • Rajan, K., and K. R. Senthil Kumar. 2020. Experimental study on diesel engine working characteristics using yellow oleander biodiesel with the effect of different injection timings. In Energy sources, Part A: Recovery, utilization and environmental effects. doi:10.1080/15567036.2020.1722295
  • Sakthivel, R., K. Ramesh, R. Purnachandran, and P. Mohamed Shameer. 2018. A review on the properties, performance and emission aspects of the third generation biodiesels. Renewable and Sustainable Energy Reviews 82:2970–92. doi:10.1016/j.rser.2017.10.037.
  • Sankar, V., M. Ramachandran, G. Thampi, and M. K. Jayaraj. 2019. Combined effects of thermal barrier coating and blending of diesel fuel with biodiesel in diesel engines. Materials Today: Proceedings 11:903–11.
  • Sarıkoç, S., İ. Örs, and S. Ünalan. 2020. “An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends.” Fuel 268. doi: 10.1016/j.fuel.2020.117321.
  • Senthilkumar, G., J. B. Sajin, D. Yuvarajan, and T. Arunkumar. 2020. Evaluation of emission, performance and combustion characteristics of dual fuelled research diesel engine. Environmental Technology 41 (6):711–18. doi:10.1080/09593330.2018.1509888.
  • Sharma, V., G. Duraisamy, H. M. Cho, K. Arumugam, and A. Alosius M. 2019. Production, combustion and emission impact of bio-mix methyl ester fuel on a stationary light duty diesel engine. Journal of Cleaner Production 233:147–59. doi:10.1016/j.jclepro.2019.06.003.
  • Silitonga, A. S., H. H. Masjuki, T. M. I. Mahlia, H. C. Ong, W. T. Chong, and M. H. Boosroh. 2013. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews 22:346–60. doi:10.1016/j.rser.2013.01.055.
  • Simsek, S. 2020. “Effects of biodiesel obtained from canola, safflower oils and waste oils on the engine performance and exhaust emissions.” Fuel 265. doi: 10.1016/j.fuel.2020.117026.
  • Singh, D., D. Sharma, S. L. Soni, S. Sharma, and D. Kumari. 2019. Chemical compositions, properties, and standards for different generation biodiesels: A review. Fuel 253:60–71. doi:10.1016/j.fuel.2019.04.174.
  • Sorate, K. A., and P. V. Bhale. 2015. Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews 41:777–98. doi:10.1016/j.rser.2014.08.079.
  • Taghavifar, H., A. Nemati, F. J. Salvador, and J. De la Morena. 2019. Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration. Energy 167:211–23. doi:10.1016/j.energy.2018.10.168.
  • Tat, M. E. 2011. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel Processing Technology 92:1311–21. doi:10.1016/j.fuproc.2011.02.006.
  • Ulusoy, Y., R. Arslan, Y. Tekin, A. Sürmen, A. Bolat, and R. Şahin. 2018. Investigation of performance and emission characteristics of waste cooking oil as biodiesel in a diesel engine. Petroleum Science 15:396–404.
  • Utlu, Z., and M. S. Koçak. 2008. The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renewable Energy 33 (8):1936–41. doi:10.1016/j.renene.2007.10.006.
  • Wei, L., C. S. Cheung, and Z. Ning. 2018. Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. Energy 155:957–70. doi:10.1016/j.energy.2018.05.049.
  • Yesilyurt, M. K. 2019. The effects of the fuel injection pressure on the performance and emission characteristics of a diesel engine fuelled with waste cooking oil biodiesel-diesel blends. Renewable Energy 132:649–66. doi:10.1016/j.renene.2018.08.024.
  • Yüksek, L., O. Özener, V. Kızılkan, and H. E. Arslan. 2018. Investigation of the compatibility of waste cooking oil biodiesel usage in compression ignition engines with different compression ratios. Dicle University Journal of Engineering 9 (2):765–74.
  • Yüncü, H. 2010. Exergy analyse (second law efficiency & thermoeconomy). Ankara: ODTÜ.
  • Zheng, J., and J. A. Caton. 2012. Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation. Energy 38:78–84. doi:10.1016/j.energy.2011.12.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.