1,408
Views
18
CrossRef citations to date
0
Altmetric
Review

Plastic waste conversion to fuel: a review on pyrolysis process and influence of operating parameters

, &
Pages 11904-11924 | Received 08 Jun 2020, Accepted 30 Aug 2020, Published online: 16 Sep 2020

References

  • Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., & Ahmad, W. (2015). Pyrolysis study of polypropylene and polyethylene into premium oil products. International journal of green energy, 12(7), 663–671. doi:10.1080/15435075.2014.880146
  • Akubo, K., M. A. Nahil, and P. T. Williams. 2017. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute 92 (1):195–202. doi:10.1016/j.joei.2017.10.009.
  • Alam, M., A. Bhavanam, A. Jana, J. kumar, S. Viroja, and N. R. Peela. 2020. Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics. Renewable Energy 149:1133–45. doi:10.1016/j.renene.2019.10.103.
  • Areeprasert, C., J. Asingsamanunt, S. Srisawat, J. Kaharn, B. Inseemeesak, P. Phasee, C. Khaobang, W. Siwakosit, and C. Chiemchaisri. 2017. Municipal plastic waste composition study at transfer station of Bangkok and possibility of its energy recovery by pyrolysis. Energy Procedia 107:222–26.
  • Ayodele, T. R., A. S. O. Ogunjuyigbe, O. Durodola, and J. L. Munda. 2020. Electricity generation potential and environmental assessment of bio-oil derivable from pyrolysis of plastic in some selected cities of Nigeria. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 42 (10):1167–82. doi:10.1080/15567036.2019.1602226.
  • Barbarias, I., G. Lopez, M. Artetxe, A. Arregi, J. Bilbao, and M. Olazar. 2018. Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management 156 (November):575–84. doi:10.1016/j.enconman.2017.11.048.
  • Biddinika, M. K., M. Syamsiro, A. N. Hadiyanto, Z. Mufrodi, and F. Takahashi. 2017. Technology for public outreach of fuel oil production from municipal plastic wastes. Energy Procedia 142:2797–801. doi:10.1016/j.egypro.2017.12.424.
  • Bukkarapu, K. R., D. S. Gangadhar, Y. Jyothi, and P. Kanasani. 2018. Management, conversion, and utilization of waste plastic as a source of sustainable energy to run automotive: A review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 40 (14):1681–92. doi:10.1080/15567036.2018.1486898.
  • Chattopadhyay, J., T. S. Pathak, R. Srivastava, and A. C. Singh. 2016. Catalytic co-pyrolysis of paper biomass and plastic mixtures HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate) and product analysis. Energy 103:513–21. doi:10.1016/j.energy.2016.03.015.
  • Chunmei, Q., Z. Min, W. Jianghong, Y. Puhai, and Y. Xu. 2014. Pyrolysis and co-pyrolysis of lignite and plastic. International Journal of Mining Science and Technology 24 (1):137–41. doi:10.1016/j.ijmst.2013.12.023.
  • Das, P., and P. Tiwari. 2018. Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling 128 (September):69–77. 2017. doi:10.1016/j.resconrec.2017.09.025.
  • Dewangan, A., D. Pradhan, and R. K. Singh. 2016. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield. Fuel 185:508–16. doi:10.1016/j.fuel.2016.08.011.
  • Faussone, G. C. 2017. Transportation fuel from plastic: Two cases of study. Waste Management 73:416–23. doi:10.1016/j.wasman.2017.11.027.
  • Fivga, A., and I. Dimitriou. 2018. Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment. Energy 149:865–74. doi:10.1016/j.energy.2018.02.094.
  • Geyer, R., J. R. Jambeck, and K. L. Law. 2017. Production, use, and fate of all plastics ever made - supplementary information. Science Advances 3 (7):19–24. doi:10.1126/sciadv.1700782.
  • Gou, X., X. Zhao, S. Singh, and D. Qiao. 2019. Tri-pyrolysis : A thermo-kinetic characterisation of polyethylene, cornstalk, and anthracite coal using TGA-FTIR analysis. Fuel 252 (April):393–402. doi:10.1016/j.fuel.2019.03.143.
  • Huang, W., M. Huang, C. Huang, and C. Chen. 2010. Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel 89 (9):2305–16. doi:10.1016/j.fuel.2010.04.013.
  • Iftikhar, H., M. Zeeshan, S. Iqbal, B. Muneer, and M. Razzaq. 2019. Bioresource Technology Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresource Technology 289 (April):121647. doi:10.1016/j.biortech.2019.121647.
  • Jin, Z., D. Chen, L. Yin, Y. Hu, H. Zhu, and L. Hong. 2018. Molten waste plastic pyrolysis in a vertical falling film reactor and the influence of temperature on the pyrolysis products. Chinese Journal of Chemical Engineering 26 (2):400–06. doi:10.1016/j.cjche.2017.08.001.
  • Kaimal, V. K., and P. Vijayabalan. 2016. A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines. Waste Management 51:91–96. doi:10.1016/j.wasman.2016.03.003.
  • Kalargaris, I., G. Tian, and S. Gu. 2017. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology 157:108–15. doi:10.1016/j.fuproc.2016.11.016.
  • Kassargy, C., S. Awad, G. Burnens, K. Kahine, and M. Tazerout. 2018. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel 224 (March):764–73. doi:10.1016/j.fuel.2018.03.113.
  • Kim, M. R., E. L. Buonomo, P. R. Bonelli, and A. L. Cukierman. 2010. The thermochemical processing of municipal solid wastes: Thermal events and the kinetics of pyrolysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 32 (13):1207–14. doi:10.1080/15567030802665992.
  • Lin, X., Z. Zhang, Z. Zhang, J. Sun, Q. Wang, and C. U. Pittman. 2018. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts. Waste Management 79:38–47. doi:10.1016/j.wasman.2018.07.021.
  • Miandad, R., M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. I. Ismail, J. Dhavamani, J. Gardy, A. Hassanpour, A.-S. Nizami, et al. 2019. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research 7. doi:10.3389/fenrg.2019.00027, March.
  • Miandad, R., M. A. Barakat, M. Rehan, A. S. Aburiazaiza, I. M. I. Ismail, and A. S. Nizami. 2017. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Management 69:66–78. doi:10.1016/j.wasman.2017.08.032.
  • Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., ... & Murphy, J. D. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250–259
  • Miskolczi, N., and F. Ateş. 2016. Thermo-catalytic co-pyrolysis of recovered heavy oil and municipal plastic wastes. Journal of Analytical and Applied Pyrolysis 117:273–81. doi:10.1016/j.jaap.2015.11.005.
  • Miskolczi, N., F. Ateş, and N. Borsodi. 2013. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: Contaminants, char and pyrolysis oil properties. Bioresource Technology 144:370–79. doi:10.1016/j.biortech.2013.06.109.
  • Mokhtar, N. M., R. Omar, and A. Idris. 2012. Microwave pyrolysis for conversion of materials to energy: A brief review. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 34 (22):2104–22. doi:10.1080/15567036.2010.493923.
  • Muhammad, C., J. A. Onwudili, and P. T. Williams. 2015. Thermal degradation of real-world waste plastics and simulated mixed plastics in a two-stage pyrolysis-catalysis reactor for fuel production. Energy and Fuels 29 (4):2601–09. doi:10.1021/ef502749h.
  • Muneer, B., M. Zeeshan, S. Qaisar, M. Razzaq, and H. Iftikhar. 2019. Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality. Journal of Cleaner Production 237:117762. doi:10.1016/j.jclepro.2019.117762.
  • Odjo, A. O., A. N. García, and A. Marcilla. 2013. Conversion of low density polyethylene into fuel through co-processing with vacuum gas oil in a fluid catalytic cracking riser reactor. Fuel Processing Technology 113 (May):130–40. 2018. doi:10.1016/j.fuproc.2013.03.008.
  • Ojha, D. K., and R. Vinu. 2015. Fast co-pyrolysis of cellulose and polypropylene using Py-GC/MS and Py-FT-IR. RSC Advances 5 (82):66861–70. doi:10.1039/C5RA10820A.
  • Ozsin, G., and A. E. Pütün. 2018. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride : Synergistic effects and product characteristics. Journal of Cleaner Production 205:1127–38. doi:10.1016/j.jclepro.2018.09.134.
  • Park, Y-K., Jung, J. S., Jae, J., Hong, S. B., Watanabe, A., & Kim, Y-M. (2019). Catalytic fast pyrolysis of wood plastic composite over microporous zeolites. Chemical Engineering Journal, 377, 119742 doi:10.1016/j.cej.2018.08.128
  • Parker, L. 2018. A whopping 91% of plastic isn’t recycled. National Geographic, December 20, 47
  • Press Trust of India. 2019. India produces 25,000 tonnes plastic waste daily, 40% uncollected: Centre. NDTV.com, November 22, 45.
  • Quesada, L., M. Calero, M. A. Martín-Lara, and A. Perez. 2019. Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste. Energy 186, 2020:115874. doi:10.1016/j.energy.2019.115874.
  • Raja, A., and A. Murali. 2011. Conversion of plastic wastes into fuels. Journal of Materials Science and Engineering B 1:8689.
  • Ratnasari, D. K., M. A. Nahil, and P. T. Williams. 2017. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis 124:631–37. doi:10.1016/j.jaap.2016.12.027.
  • Razzaq, M., M. Zeeshan, S. Qaisar, H. Iftikhar, and B. Muneer. 2019. Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene. Fuel 257 (August):116119. doi:10.1016/j.fuel.2019.116119.
  • Sajdak, M. 2017. Journal of analytical and applied pyrolysis impact of plastic blends on the product yield from co-pyrolysis of lignin-rich materials. Journal of Analytical and Applied Pyrolysis 124:415–25. doi:10.1016/j.jaap.2017.03.002.
  • Sajdak, M., and R. Muzyka. 2014. Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: The effect of the addition of plastic waste on the process and products. Journal of Analytical and Applied Pyrolysis 107:267–75. doi:10.1016/j.jaap.2014.03.011.
  • Saleem, M., K. Inamullah, M. Sohail, and N. Saeed. 2020. Conversion of mixed low-density polyethylene wastes into liquid fuel by novel CaO/SiO 2 catalyst. Journal of Polymers and the Environment 24 (3):255–63.
  • Sebestyén, Z., Barta-Rajnai, E., Bozi, J., Blazsó, M., Jakab, E., Miskolczi, N., & Czégény, Z. (2017). Catalytic pyrolysis of biomass and plastic mixtures using HZSM-5 zeolite. Energy Procedia, 105, 718–723 doi:10.1016/j.egypro.2017.03.381
  • Siddiqui, M. N., and H. H. Redhwi. 2009. Pyrolysis of mixed plastics for the recovery of useful products. Fuel Processing Technology 90 (4):545–52. doi:10.1016/j.fuproc.2009.01.003.
  • Singh, R. K., and B. Ruj. 2016. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. FUEL 174:164–71. doi:10.1016/j.fuel.2016.01.049.
  • Suriapparao, D. V., B. Boruah, D. Raja, and R. Vinu. 2018. Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Processing Technology 175 (November):64–75. 2017. doi:10.1016/j.fuproc.2018.02.019.
  • Susastriawan, A. A. P., and A. Sandria. 2020. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Thermal Science and Engineering Progress 17 (February):100497. doi:10.1016/j.tsep.2020.100497.
  • Utami, M., K. Wijaya, and W. Trisunaryanti. 2018. Pt-promoted sulfated zirconia as catalyst for hydrocracking of LDPE plastic waste into liquid fuels. Materials Chemistry and Physics 213:548–55. doi:10.1016/j.matchemphys.2018.03.055.
  • Uzoejinwa, B. B., He, X., Wang, S., Abomohra, Abd El-Fatah.., Hu, Y., He, Z., & Wang, Q. (2020). Co-pyrolysis of seaweeds with waste plastics: modeling and simulation of effects of co-pyrolysis parameters on yields, and optimization studies for maximum yield of enhanced biofuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(8), 954–978 doi:10.1080/15567036.2019.1602209
  • Wang, J., J. Jiang, X. Wang, R. Wang, K. Wang, S. Pang, Z. Zhong, Y. Sun, R. Ruan, A. J. Ragauskas, et al. 2020. Converting polycarbonate and polystyrene plastic wastes into aromatic hydrocarbons via catalytic fast co-pyrolysis. Journal of Hazardous Materials 386 (16):121970. doi:10.1016/j.jhazmat.2019.121970.
  • Wang, J., J. Jiang, Z. Zhong, K. Wang, X. Wang, B. Zhang, R. Ruan, M. Li, and A. J. Ragauskas. 2019. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5. Energy Conversion and Management, 196, pp.759–767.and HZSM-5. Energy Conversion and Management 196 (April):759–67. doi:10.1016/j.enconman.2019.06.009.
  • Whitcomb, I. 2020. How much plastic actually gets recycled? LiveScience, March 07, 48
  • Wong, S. L., N. Ngadi, T. A. T. Abdullah, and I. M. Inuwa. 2015. Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews 50:1167–80. doi:10.1016/j.rser.2015.04.063.
  • Xue, Y., S. Zhou, R. C. Brown, A. Kelkar, and X. Bai. 2015. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46. doi:10.1016/j.fuel.2015.04.033.
  • 2020. The lifecycle of plastics. Wwf.org.au, 49.
  • Yang, J., Rizkiana, J., Widayatno, W. B., Karnjanakom, S., Kaewpanha, M., Hao, X., ... & Guan, G. (2016). Fast co-pyrolysis of low density polyethylene and biomass residue for oil production. Energy conversion and management, 120, 422–429
  • Yu, D., H. Hui, and S. Li. 2019. Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil. Energy Conversion and Management 198 (April):111816. doi:10.1016/j.enconman.2019.111816.
  • Zhang, Y., Duan, D., Lei, H., Villota, E., & Ruan, R. (2019). Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy, 251, 113337 doi:10.1016/j.apenergy.2019.113337

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.