189
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Turbulent mixed convective heat transfer in a ventilated enclosure with a cylindrical/cubical heat source: a 3D analysis

, , , , ORCID Icon &
Pages 12423-12440 | Received 11 Mar 2021, Accepted 20 Apr 2021, Published online: 18 Jun 2021

References

  • Ajmera, S. K., and A. N. Mathur. 2015. Combined free and forced convection in an enclosure with different ventilation arrangements. Procedia Engineering 127:1173–80. doi:10.1016/j.proeng.2015.11.456.
  • Aminossadati, S. M., and B. Ghasemi. 2009. A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity. European Journal of Mechanics - B/Fluids 28 (4):590–98. doi:10.1016/j.euromechflu.2009.01.001.
  • Angirasa, D. 2000. Mixed convection in a vented enclosure with an isothermal vertical surface. Fluid Dynamics Research 26 (4):219. doi:10.1016/s0169-5983(99)00024-6.
  • Atia, A., B. Ghernaout, and S. Bouabdallah. 2018. Transition from steady to oscillatory flow natural convection of low-Pr fluids in 3D bridgman configuration for crystal growth. Journal of Applied Fluid Mechanics 11 (4):2018. doi:10.18869/acadpub.jafm.73.247.27603.
  • Barletta, A., E. Magyari, and B. Keller. 2005. Dual mixed convection flows in a vertical channel. International Journal of Heat and Mass Transfer 48 (23–24):4835–45. doi:10.1016/j.ijheatmasstransfer.2005.05.036.
  • Benhamza, A., A. Boubekri, A. Atia, H. El Ferouali, T. Hadibi, M. Arıcı, and N. Abdenouri. 2021. Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential. Renewable Energy169:1190–209. doi:10.1016/j.renene.2021.01.086
  • Biswas, N., P. S. Mahapatra, and N. K. Manna. 2015. Thermal management of heating element in a ventilated enclosure. International Communications in Heat and Mass Transfer 66:84–92. doi:10.1016/j.icheatmasstransfer.2015.05.018.
  • Bouabdallah, S., D. Chati, B. Ghernaout, A. Atia, and A. Laouirate. 2016. Turbulent mixed convection in enclosure containing a circular/square heat source. International Journal of Heat and Technology 34 (3):446–54. doi:10.18280/ijht.340314.
  • Calcagni, B., F. Marsili, and M. Paroncini. 2005. Natural convective heat transfer in square enclosures heated from below. Applied Thermal Engineering 25 (16):2522–31. doi:10.1016/j.applthermaleng.2004.11.032.
  • Dawood, H. K., H. A. Mohammed, and K. M. Munisamy. 2014. Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition. Case Studies in Thermal Engineering 4 (Nov):32–41. doi:10.1016/J.CSITE.2014.06.001.
  • Doghmi, H., B. Abourida, L. Belarche, M. Sannad, and M. Ouzaouit. 2018. Numerical study of mixed convection inside a three-dimensional ventilated cavity in the presence of an isothermal heating block. International Journal of Heat and Technology 36 (2):447–56. doi:10.18280/ijht.360209.
  • Ebrahim Qomi, M., G. A. Sheikhzadeh, and A. Fattahi. 2020. Heat transfer enhancement in a microchannel using a pulsating MHD hybrid nanofluid flow. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1834031.
  • Fakour, M., A. Vahabzadeh, and D. D. Ganji. 2014. Scrutiny of mixed convection flow of a nanofluid in a vertical channel. Case Studies in Thermal Engineering 4:15–23. doi:10.1016/j.csite.2014.05.003.
  • Gupta, N., A. K. Nayak, and S. Malik. 2018. Conjugate heat and species transport in an air filled ventilated enclosure with a thermo-contaminated block. International Journal of Heat and Mass Transfer 117:388–411. doi:10.1016/j.ijheatmasstransfer.2017.10.028.
  • Hinojosa, J. F., N. A. Rodriguez, and J. Xamán. 2016. Heat transfer and airflow study of turbulent mixed convection in a ventilated cavity. Journal of Building Physics 40 (3):204–34. doi:10.1177/1744259115611640.
  • Izadi, S., T. Armaghani, R. Ghasemiasl, A. J. Chamkha, and M. Molana. 2019. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technology 343:880–907. doi:10.1016/j.powtec.2018.11.006.
  • Kalteh, M., K. Javaherdeh, and T. Azarbarzin. 2014. Numerical solution of nanofluid mixed convection heat transfer in a lid-driven square cavity with a triangular heat source. Powder Technology 253:780–88. doi:10.1016/j.powtec.2013.12.039.
  • Kareem, A. K., and S. Gao. 2018. A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder. International Communications in Heat and Mass Transfer 10 (1016):44–55. doi:10.1016/j.icheatmasstransfer.2017.10.016.
  • Khan, N. H., and M. A. Hassan. 2021. Convective heat transport in yield stress nanofluids in a differentially heated square enclosure. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–24. doi:10.1080/15567036.2021.1892884.
  • Khanafer, K., and S. M. Aithal. 2013. Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder. International Journal of Heat and Mass Transfer 10 (1016):200–09. doi:10.1016/j.ijheatmasstransfer.2013.07.023.
  • Kherroubi, S., K. Ragui, A. Bensaci, N. Labsi, and A. Boutra. 2020. Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode : Best configurations. Journal of Thermal Analysis and Calorimetry 139 (3):2243–64. doi:10.1007/s10973-019-08638-2.
  • Koufi, L., Z. Younsi, Y. Cherif, and H. Naji. 2017. Numerical investigation of turbulent mixed convection in an open cavity: Effect of inlet and outlet openings. International Journal of Thermal Sciences 10 (1016):103–17. doi:10.1016/j.ijthermalsci.2017.02.007.
  • Leong, J. C., N. M. Brown, and F. C. T. Lai. 2005. Mixed convection from an open cavity in a horizontal channel. International Communications in Heat and Mass Transfer 32 (5):583–92. doi:10.1016/j.icheatmasstransfer.2004.10.018.
  • Mamun, M. A. H., M. M. Rahman, M. M. Billah, and R. Saidur. 2010. A numerical study on the effect of a heated hollow cylinder on mixed convection in a ventilated cavity. International Communications in Heat and Mass Transfer 37 (9):1326–34. doi:10.1016/j.icheatmasstransfer.2010.07.019.
  • Mehrizi, A. A., M. Farhadi, H. H. Afroozi, K. Sedighi, and A. A. R. Darz. 2012. Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nanofluid and outlet port location. International Communications in Heat and Mass Transfer 39 (7):1000–08. doi:10.1016/j.icheatmasstransfer.2012.04.002.
  • Orfi, J., and N. Galanis. 2002. Developing laminar mixed convection with heat and mass transfer in horizontal and vertical tubes. International Journal of Thermal Sciences 41 (4):319–31. doi:10.1016/s1290-0729(02)01322-4.
  • Ovando-Chacon, G. E., S. L. Ovando-Chacon, J. C. Prince-Avelino, and M. A. Romo-Medina. 2013. Numerical study of the heater length effect on the heating of a solid circular obstruction centered in an open cavity. European Journal of Mechanics - B/Fluids 42:176–85. doi:10.1016/j.euromechflu.2013.04.006.
  • Oztop, H. F. 2010. Influence of exit opening location on mixed convection in a channel with volumetric heat sources. International Communications in Heat and Mass Transfer 37 (4):410–15. doi:10.1016/j.icheatmasstransfer.2010.01.006.
  • Perng, S., and H. Wu. 2008. Numerical investigation of mixed convective heat transfer for unsteady turbulent flow over heated blocks in a horizontal channel. International Journal of Thermal Sciences 47 (5):620–32. doi:10.1016/j.ijthermalsci.2007.04.003.
  • Piña-Ortiz, A., J. F. Hinojosa, J. P. Xamán, and J. M. A. Navarro. 2018. Test of turbulence models for heat transfer within a ventilated cavity with and without an internal heat source. International Communications in Heat and Mass Transfer 94 (May):106–14. doi:10.1016/J.ICHEATMASSTRANSFER.2018.03.021.
  • R. Krane and J. Jessee, “Some Detailed Field Measurement for a Natural Convection Flow in a Vertical Square Enclosure,” Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, Honolulu, 20–24 March 1983, pp. 323–329
  • Radhakrishnan, T. V., A. K. Verma, C. Balaji, and S. P. Venkateshan. 2007. An experimental and numerical investigation of mixed convection from a heat generating element in a ventilated cavity. Experimental Thermal and Fluid Science 32 (2):502–20, Nov. doi:10.1016/J.EXPTHERMFLUSCI.2007.06.001.
  • Radhakrishnan, T. V., C. Balaji, and S. P. Venkateshan. 2010. Optimization of multiple heaters in a vented enclosure – A combined numerical and experimental study. International Journal of Thermal Sciences 49 (4):721–32. doi:10.1016/j.ijthermalsci.2009.09.012.
  • Radouane, F., A. Abderrahmane, F. Mebarek-Oudina, W. Ahmed, A. M. Rashad, M. Sahnoun, and H. M. Ali. 2020. Magneto-free convectiveof hybrid nanofluid inside non-darcy porous enclosure containing an adiabatic rotating cylinder. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1856235.
  • Rahman, M., M. A. Alim, S. Saha, and M. K. Chowdhury. 2008. Mixed convection in a vented square cavity with a heat conducting horizontal solid circular cylinder. Journal of Naval Architecture and Marine Engineering 5 (2):37–46. doi:10.3329/jname.v5i2.2504.
  • Rahman, M. M., M. A. Alim, and M. A. H. Mamun. 2009. Finite element analysis of mixed convection in a rectangular cavity with a heat-conducting horizontal circular cylinder. Nonlinear Analysis: Modelling and Control 14 (2):217–47. doi:10.15388/na.2009.14.2.14522.
  • Rahman, M. M., M. A. Alim, M. A. H. Mamun, M. K. Chowdhury, and A. K. M. S. Islam. 2007. Numerical study of opposing mixed convection in a vented enclosure. ARPN :: Journal of Engineering and Applied Sciences 2 (2):25–36.
  • Shahzad Nazir, M., A. Shahsavar, M. Afrand, M. Arıcı, S. Nižetić, Z. Ma, and H. F. Öztop. 2021. A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technologies and Assessments 45 (February). doi:10.1016/j.seta.2021.101103.
  • Tian, C., J. Wang, X. Cao, C. Yan, and A. A. Ala. 2018. Experimental study on mixed convection in an asymmetrically heated, inclined, narrow, rectangular channel. International Journal of Heat and Mass Transfer 116:1074–84. doi:10.1016/j.ijheatmasstransfer.2017.09.099.
  • Yang, G., Y. Huang, J. Wu, L. Zhang, G. Chen, R. Lv, A. Cai. 2017. Experimental study and numerical models’ assessment of turbulent mixed convection heat transfer in a vertical open cavity. Building and Environment 115:91–103. doi:10.1016/j.buildenv.2017.01.016.
  • Zamora, B. 2018. Heating intensity and radiative effects on turbulent buoyancy-driven air flow in open square cavities with a heated immersed body. International Journal of Thermal Sciences 126 (October):218–37. 2017. doi:10.1016/j.ijthermalsci.2017.12.030.
  • Zermane, S., S. Boudebous, and N. Boulkroune. 2005. Etude numérique de la convection mixte laminaire dans des cavités ventilées. Sciences and Technologie B 23:34–44.
  • Zohir, Y., K. Lounes, and N. Hassane. 2019. Numerical study of the effects of ventilated cavities outlet location on thermal comfort and air quality. International Journal of Numerical Methods for Heat & Fluid Flow 29 (11):4462–83, Jan. doi:10.1108/HFF-09-2018-0518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.