151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative study of compound parabolic concentrator - photovoltaic thermal – thermoelectric generator (CPC-PVT-TEG) collector integrated with vapour absorption refrigeration (VAR) system

Pages 10277-10303 | Received 30 Jan 2023, Accepted 21 Jun 2023, Published online: 14 Aug 2023

References

  • Abdin, Z. U., A. Rachid, and T. B. Korkut. 2022. Design and analysis of an innovative photovoltaic-thermal collector with embedded tank. Solar Energy 245:290–98. doi:10.1016/j.solener.2022.09.018.
  • Aboueian, J., and A. Shahsavar. 2022. Feasibility study of improving the energy and exergy performance of a concentrating photovoltaic/thermal system by the simultaneous application of biological water-silver nanofluid and sheet-and-grooved tube collector: Two-phase mixture model. Engineering Analysis with Boundary Elements 144:433–40. doi:10.1016/j.enganabound.2022.08.039.
  • Aggarwal, S., and G. N. Tiwari. 2011. Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Solar Energy 85 (2):356–70. doi:10.1016/j.solener.2010.11.013.
  • Alqaed, S., J. Mustafa, F. A. Almehmadi, M. A. Alharthi, M. Sharifpur, and G. Cheraghian. 2022. Investigating the effect of tube diameter on the performance of a hybrid photovoltaic-thermal system based on phase change materials and nanofluids. Materials (Basel) 15 (21):7613. doi:10.3390/ma15217613.
  • Arora, C. P. 2000. Refrigeration and air conditioning. India: Tata Mc Graw-Hill.
  • Aweid, R. S., O. K. Ahmed, and S. Algubri. 2022. Performance of floating photovoltaic/thermal system: Experimental assessment. International Journal of Energy Research 1–14. doi:10.1002/er.8729.
  • Azizi, M., R. Tabatabaeekoloor, A. Motevali, and S. R. M. Seyedi. 2023. Evaluation of mono and hybrid nano-fluids on energy and exergy parameters of a photovoltaic-thermal system equipped with an eccentric parabolic trough concentrator. Applied Thermal Engineering 223:119979. doi:10.1016/j.applthermaleng.2023.119979.
  • Bae, S., Y. Nam, E. J. Lee, and E. Entchev. 2022. Feasibility study of a novel hybrid energy system combining photovoltaic-thermal and modular ground heat exchanger. Journal of Building Energy 61:105241. doi:10.1016/j.jobe.2022.105241.
  • Bamisile, O., D. Cai, M. Adedeji, M. Dagbasi, J. Li, Y. Hu, and Q. Huang. 2023. Thermo-enviro-exergoeconomic analysis and multi-objective optimization of a novel geothermal-solar-wind micro-multi-energy system for cleaner energy production. Process Safety and Environmental Protection 170:157–75. doi:10.1016/j.psep.2022.11.068.
  • Barthwal, M., and D. Rakshit. 2022. Holistic opto-thermo-electrical analysis of a novel spectral beam splitting-based concentrating photovoltaic thermal system. Journal of Cleaner Production 379:134545. doi:10.1016/j.jclepro.2022.134545.
  • Bugeja, R., L. M. Stagno, and I. Niarchos. 2023. Photovoltaic backside cooling using the space inside a conventional frame (IPCOSY). Future Energy 2:20–28. doi:10.55670/fpll.fuen.2.3.3.
  • Dey, A., Z. U. Ahmed, and M. R. Alam. 2022. Thermal and exergy analysis of Pin-finned heatsinks for nanofluid cooled high concentrated - photovoltaic thermal (HCPV/T) hybrid systems. Energy Conversion and Management 16:100324. doi:10.1016/j.ecmx.2022.100324.
  • Dimri, N., A. Tiwari, and G. N Tiwari. 2017. Thermal modelling of semi-transparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion & Management 146:68–77. doi:10.1016/j.enconman.2017.05.017.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2018. Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency. Solar Energy 166:159–70. doi:10.1016/j.solener.2018.03.030.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2019a. Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors. Renewable Energy 134 (2019a):343–56. doi:10.1016/j.renene.2018.10.105.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2019b. An overall exergy analysis of glass-tedlar photovoltaic thermal air collector incorporating thermoelectric cooler; a comparative study using artificial neural networks. Energy Conversion & Management 195 (2019b):1350–58. doi:10.1016/j.enconman.2019.04.044.
  • Eke, M. N., O. I. Ibeagwu, E. C. Okoroigwe, and C. C. Maduabuchi. 2022. Thermodynamic modeling of a spectrum split perovskite/silicon solar cell hybridized with thermoelectric devices. International Journal of Energy Research 46 (14):19451–66. doi:10.1002/er.8515.
  • Elminshawy, N., A. Elminshawy, A. Osama, M. Bassyouni, and M. Arici. 2022. Experimental performance analysis of enhanced concentrated photovoltaic utilizing various mass flow rates of Al2O3-nanofluid: Energy, exergy, and exergoeconomic study. Sustainable Energy Technologies and Assessments 53:102723. doi:10.1016/j.seta.2022.102723.
  • Elsheniti, M. B., S. Zaheer, O. Zeitoun, H. Alshehri, A. Al-Rabiah, and Z. Almutairi. 2023. Experimental evaluation of a solar low-concentration photovoltaic/thermal system combined with a phase-change material cooling technique. Applied Sciences 13 (1):25. doi:10.3390/app13010025.
  • Ge, Y., Q. Xiao, W. Wang, Y. Lin, and S. M. Huang. 2022. Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm. Renewable Energy 200:136–45. doi:10.1016/j.renene.2022.09.091.
  • He, Y., Y. B. Tao, and H. Ye. 2023. Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions. Energy 263:125916. doi:10.1016/j.energy.2022.125916.
  • He, Y., Y. B. Tao, C. Y. Zhao, and X. K. Yu. 2022. Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions. Renewable Energy 200:320–33. doi:10.1016/j.renene.2022.09.129.
  • Indra, S. S., C. A. Vaithilingam, R. Sivasubramanian, K. K. Chong, K. Narsinghamurthi, and R. Saidur. 2022. Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study. Renewable Energy 201:224–39. doi:10.1016/j.renene.2022.10.110.
  • Ismaila, K. G., A. Z. Sahin, and B. S. Yilbas. 2021. Exergo-economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator. Journal of Thermal Analysis and Calorimetry 145 (3):1035–52. doi:10.1007/s10973-020-10508-1.
  • Ismaila, K. G., A. Z. Sahin, B. S. Yilbas, and A. Al-Sharafi. 2021. Thermo-economic optimization of a hybrid photovoltaic and thermoelectric power generator using overall performance index. Journal of Thermal Analysis and Calorimetry 144 (5):1815–29. doi:10.1007/s10973-021-10547-2.
  • Khan, A. A., M. Danish, S. Rubaiee, and S. M. Yahya. 2022. Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Cleaner Engineering and Technology 11:100572. doi:10.1016/j.clet.2022.100572.
  • Ko, J., and J. W. Jeong. 2021. Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material. Renewable and Sustainable Energy Reviews 145:111085. doi:10.1016/j.rser.2021.111085.
  • Kouravand, A., A. Kasaeian, F. Pourfayaz, and M. A. V. Rad. 2022. Evaluation of a nanofluid - based concentrating photovoltaic thermal system integrated with finned PCM heatsink: An experimental study. Renewable Energy 201:10101025. doi:10.1016/j.renene.2022.11.025.
  • Lamba, R., and S. C. Kaushik. 2016. Modelling, and performance analysis of a concentrated photovoltaic-thermoelectric hybrid power generation system. Energy Conversion and Management 115:288–98. doi:10.1016/j.enconman.2016.02.061.
  • Li, J., W. Zhang, L. Xie, Z. Li, X. Wu, O. Zhao, J. Zhong, and X. Zeng. 2022. A hybrid photovoltaic and water/air based thermal (PVT) solar energy collector with integrated PCM for building application. Renewable Energy 199:662–71. doi:10.1016/j.renene.2022.09.015.
  • Maduabuchi, C., M. Alanazi, and A. Alzahmi. 2022. Accurate prophecy of photovoltaic-segmented thermoelectric generator’s performance using a neural network that feeds on finite element-generated data. Sustainable Energy, Grids and Networks 32 (2022b):100905. doi:10.1016/j.segan.2022.100905.
  • Maduabuchi, C., and M. Alobaid. 2022. Geometry and stage number optimization of a concentrating solar multistage segmented thermoelectric generator (TEG) by exploiting different optimization schemes. International Journal of Energy Research 46 (15):1–20. doi:10.1002/er.8595.
  • Malik, M. S., M. N. Arbab, M. O. Khan, M. A. Malik, and M. U. Asghar. 2021. Simulation study to evaluate the hybrid photovoltaic -thermoelectric energy generation system with heat recovery mechanism. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 1–19. doi:10.1080/15567036.2021.1926599.
  • Meraj, M., M. Azhar, M. Z. Khan, S. S. Anjum, M. S. F. Ahmad, M. F. Ab Rasheed, S. I. I. Ahmed, and M. N. M. Alam. 2021. Thermal modelling of PVT-CPC integrated vapour absorption refrigeration system. Materials Today: Proceedings 38:391–96. doi:10.1016/j.matpr.2020.07.547.
  • Prapas, D. E., B. Norton, and S. D. Probert. 1987. Thermal design of compound parabolic concentrating solar energy collectors. ASME Journal of Solar Energy Engineering 109 (2):1987)161–168. doi:10.1115/1.3268194.
  • Rao, V. T., Y. Raja Sekhar, A. K. Pandey, Z. Said, D. M. Reddy Prasad, M. S. Hossain, and J. Selvaraj. 2022. Thermal analysis of hybrid photovoltaic-thermal water collector modified with latent heat thermal energy storage and two side serpentine absorber design. Journal of Energy Storage 56:105968. doi:10.1016/j.est.2022.105968.
  • Sahli, H., M. Elakhdar, B. Tashtoush, and E. Nahidi. 2022. Analysis of a hybrid solar absorption cooling system with thermoelectric generator. Thermal Science and Engineering Progress 35:101474. doi:10.1016/j.tsep.2022.101474.
  • Shahsavar, A., P. Jha, and I. B. Askari. 2022. Experimental study of a nanofluid-based photovoltaic/thermal collector equipped with a grooved helical microchannel heat sink. Applied Thermal Engineering 217:119281. doi:10.1016/j.applthermaleng.2022.119281.
  • Sivashankar, M., and C. Selvam. 2022. Experimental investigation on the thermal performance of low-concentrated photovoltaic module using various pin-fin configurations of heat sink with phase change materials. Journal of Renewable Energy 55:105575. doi:10.1016/j.est.2022.105575.
  • Terrab, I., N. Rebah, S. Abdelouahed, M. Aillerie, and J. P. Charles. 2022. Numerical investigation and modelling of controllable parameters on the photovoltaic thermal collector efficiency in semi-humid climatic conditions. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (4):8760–76. doi:10.1080/15567036.2022.2125124.
  • Thomas, A. S. 2023. Charge transport materials, bismuth, and copper -based perovskite solar cells: A review. Future Energy 1 (3):19–43. doi:10.55670/fpll.fuen.1.3.4.
  • Tiwari, A., S. Aggarwal, The effect of concentration ratio and number of P-N thermocouples on photovoltaic-thermoelectric hybrid power generation system. In: M. Bose and A. Modi (ed.) Proceedings of the 7th International Conference on Advances in Energy Research. Springer Proceedings in Energy (2021a). Springer, Singapore. 10.1007/978-981-15-5955-6_144
  • Tiwari, A., and S. Aggarwal. 2021b. Thermal modelling, performance analysis and exergy study of a concentrated semi-transparent photovoltaic-thermoelectric generator (CSPV-TEG) hybrid power generation system. International Journal of Sustainable Energy 40 (10):947–76. doi:10.1080/14786451.2021.1887187.
  • Tiwari, G. N., M. Meraj, and M. E. Khan. 2018. Exergy analysis of N-photovoltaic thermal-compound parabolic concentrator (N-PVT-CPC) collector for constant collection temperature for vapour absorption refrigeration (VAR) system. Solar Energy 173:1032–42. doi:10.1016/j.solener.2018.08.031.
  • Tukenmez, N., F. Yilmaz, and M. Ozturk. 2022. Parametric analysis of a solar energy based multigeneration plant with SOFC for hydrogen generation. International Journal of Hydrogen Energy 47 (5):3266–83. doi:10.1016/j.ijhydene.2021.01.131.
  • Tuncer, A. D., A. Khanlari, F. Afshari, A. Sozen, E. Ciftci, B. Kusun, and I. Sahinkesen. 2023. Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Applied Thermal Engineering 218:119288. doi:10.1016/j.applthermaleng.2022.119288.
  • Wang, N., L. L. Ni, A. Wang, H. S. Shan, H. Z. Jia, and L. Zuo. 2022. High-efficiency photovoltaic-thermoelectric hybrid energy harvesting system based on functionally multiplexed intelligent thermal management. Energy Conversion and Management 272:116377. doi:10.1016/j.enconman.2022.116377.
  • Xu, R., Z. He, L. Yang, S. Xu, R. Wang, and H. Wang. 2022. Concentration performance of solar collector integrated compound parabolic concentrator (CPC) and flat microchannel tube with tracking system. Renewable Energy 200:809–20. doi:10.1016/j.renene.2022.09.107.
  • Yang, Z., W. Li, X. Chen, S. Su, G. Lin, and J. Chen. 2018. Maximum efficiency and parametric optimum selection of a concentrated solar spectrum splitting photovoltaic cell thermoelectric generator system. Energy Conversion & Management 174:65–71. doi:10.1016/j.enconman.2018.08.038.
  • Yilmaz, F., M. Ozturk, and R. Selbas. 2022. Development and assessment of a solar – driven multigeneration plant with compressed hydrogen storage for multiple products. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2022.12.080.
  • Yin, E., and Q. Li. 2023. Multi - objective optimization of a concentrated spectrum splitting photovoltaic-thermoelectric hybrid system. Applied Thermal Engineering 219:119518. doi:10.1016/j.applthermaleng.2022.119518.
  • Yusuf, A., S. Ballikaya, and H. Tiryaki. 2022. Thermoelectric material transport properties-based performance analysis of a concentrated photovoltaic–thermoelectric system. Journal of Electronic Materials 51 (12):7198–210. doi:10.1007/s11664-022-09961-5.
  • Zafar, M. F., M. Ali, J. Akhter, M. Kaleem, and N. A. Sheikh. 2022. Characterization and performance investigation of metallic oxides based nanofluids in compound parabolic concentrating solar collector. Sustainable Energy Technologies and Assessments 54:102786. doi:10.1016/j.seta.2022.102786.
  • Zhang, X., Y. Huang, and Z. Chen. 2022. A hybrid system integrating photovoltaic module and thermoelectric devices for power and cooling cogeneration. Solar Energy 239:350–58. doi:10.1016/j.solener.2022.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.