159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on explosion characteristics of hydrogen in a sudden expansion pipe

, , , , &
Pages 9684-9699 | Received 09 Nov 2022, Accepted 17 Jun 2023, Published online: 27 Jul 2023

References

  • Bradley, D., and C. M. Harper. 1994. The development of instabilities in laminar explosion flames. Combustion & Flame 99 (3–4):562–72. doi:10.1016/0010-2180(94)90049-3.
  • Charlette, F., C. Meneveau, and D. Veynante. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combustion & Flame 131 (1/2):159–80. doi:10.1016/S0010-2180(02)00400-5.
  • Clanet, C., and G. Searby. 1996. On the “tulip flame” phenomenon. Combustion and Flame 105 (1–2):226–38. doi:10.1016/0010-2180(95)00195-6.
  • Fan, W. P., Y. Gao, Y. M. Zhang, C. L. Chow, and W. K. Chow. 2019. Experimental studies and modeling on flame velocity in turbulent deflagration in an open tube. Process Safety and Environmental Protection 129:291–307. doi:10.1016/j.psep.2019.07.013.
  • Guo, J., C. J. Wang, X. Y. Liu, and C. Ye. 2017. Explosion venting of rich hydrogen-air mixtures in a small cylindrical vessel with two symmetrical vents. International Journal of Hydrogen Energy 42 (11):7644–50. doi:10.1016/j.ijhydene.2016.05.097.
  • Lamoureux, N., N. Djebaili-Chaumeix, and C. E. Paillard. 2002. Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method. Experimental Thermal & Fluid Science 27 (4):385–93. doi:10.1016/S0894-1777(02)00243-1.
  • Lei, B. W., Q. N. Wei, R. H. Pang, J. J. Xiao, K. Kuznetsov, and T. Jordan. 2023. The effect of hydrogen addition on methane/air explosion characteristics in a 20-L spherical device. Fuel 338:127351. doi:10.1016/j.fuel.2022.127351.
  • Leo, Y. D., B. Zhang, T. K. Dai, and X. Y. Chang. 2023. Influence of pressure and dilution gas on the explosion behavior of methane-oxygen mixtures. Fuel 333:126390. doi:10.1016/j.fuel.2022.126390.
  • Leo, Y. D., B. Zhang, K. Kuznetsov, and T. Jordan. 2022. Explosion behavior of methane-air mixtures and Rayleigh-Taylor instability in the explosion process near the flammability limits. Fuel 324:124730. doi:10.1016/j.fuel.2022.124730.
  • Li, Y. C., M. S. Bi, Y. H. Zhou, Z. L. Zhang, K. Zhang, C. S. Zhang, and W. Gao. 2021. Characteristics of hydrogen-ammonia-air cloud explosion. Process Safety and Environmental Protection 148:1207–16. doi:10.1016/j.psep.2021.02.037.
  • Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids 4 (4):633–35. doi:10.1063/1.858280.
  • Li, Y. C., Y. H. Zhou, Z. L. Zhang, S. Shang, and W. Gao. 2023. Experimental and theoretical investigation on hydrogen cloud explosion subjected to external turbulence. International Journal of Hydrogen Energy 48 (40):15331–40. doi:10.1016/j.ijhydene.2023.01.045.
  • Mei, Y., J. Shuai, N. Zhou, F. Ren, and W. Ren. 2022. Flame propagation of premixed hydrogen-air explosions in bend pipes. Journal of Loss Prevention in the Process Industries 77:104790. doi:10.1016/j.jlp.2022.104790.
  • Nguyen, T., C. Strebinger, G. E. Bogin, and J. Brune. 2020. A 2D CFD model investigation of the impact of obstacles and turbulence model on methane flame propagation. Process Safety and Environmental Protection 146:95–107. doi:10.1016/j.psep.2020.08.023.
  • Rui, S. C., C. J. Wang, S. S. Guo, R. L. Jing, and Q. Li. 2021. Hydrogen-air explosion with concentration gradients in a cubic enclosure. Process Safety and Environmental Protection 151:141–50. doi:10.1016/j.psep.2021.05.003.
  • Shang, S., M. S. Bi, K. Zhang, Y. C. Li, Z. H. Gao, Z. L. Zhang, X. L. Li, C. S. Zhang, and W. Gao. 2022. Suppression of hydrogen-air explosions by isobutene with special molecular structure. International Journal of Hydrogen Energy 47 (61):25864–75. doi:10.1016/j.ijhydene.2022.06.012.
  • Shen, X. B., G. L. Xiu, and S. Z. Wu. 2017. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition. Applied Thermal Engineering 120:741–47. doi:10.1016/j.applthermaleng.2017.04.040.
  • Sun, M. B., X. S. Bai, and Z. G. Wang. 2014. Theory and application of turbulent combustion flame surface model, 8–12. In Science Press. Beijing: Science Press.
  • Sutherland, W. L. 1893. LII. the viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36 (223):507–31. doi:10.1080/14786449308620508.
  • Wang, S. M., Y. Du, G. Q. Li, S. Qi, S. H. Wei, and M. Li. 2018. Effect of vent size and the ignition source type on the internal overpressure loading of vented gasoline-air mixture explosion. Explosion and Shock 37 (1):23–31.
  • Wang, L. Q., Z. H. Huang, and C. Jin. 2021. Effects of vessel height and ignition position upon explosion dynamics of hydrogen-air mixtures in vessels with low asymmetry ratios. Fuel 289:119926. doi:10.1016/j.fuel.2020.119926.
  • Wang, Q., X. J. Luo, C. J. Wang, Y. Liu, P. G. Zhou, and L. Bing. 2022. Experimental study on external explosion for vented hydrogen deflagration in a rectangular tube with different vent coefficients. Process Safety and Environmental Protection 158:331–39. doi:10.1016/j.psep.2021.12.002.
  • Wen, X. P., M. G. Yu, Z. C. Liu, and W. C. Sun. 2012. Large eddy simulation of methane–air deflagration in an obstructed chamber using different combustion models. Journal of Loss Prevention in the Process Industries 25 (4):730–38. doi:10.1016/j.jlp.2012.04.008.
  • Xiao, H. H., Q. L. Duan, and J. H. Sun. 2017. Premixed flame propagation in hydrogen explosions. Renewable & Sustainable Energy Reviews 81 (2):1988–2001. doi:10.1016/j.rser.2017.06.008.
  • Yu, X. Z., J. L. Yu, C. Y. Wang, X. S. Lv, Y. L. Wang, Y. J. Hou, and X. Q. Yan. 2021. Experimental study on the overpressure and flame propagation of hybrid hydrogen/aluminum dust explosions in a square closed vessel. Fuel 285:119222. doi:10.1016/j.fuel.2020.119222.
  • Zhang, B. 2016. The influence of wall roughness on detonation limits in hydrogen–oxygen mixture. Combustion & Flame 169:333–39. doi:10.1016/j.combustflame.2016.05.003.
  • Zhang, B., X. Y. Chang, and C. H. Bai. 2020. End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets. Fuel 270:117485. doi:10.1016/j.fuel.2020.117485.
  • Zhang, K., S. F. Du, H. Chen, J. G. Wang, J. Q. Zhang, Y. Guo, and J. Guo. 2022. Effect of hydrogen concentration on the vented explosion of hydrogen–air mixtures in a 5-m-long duct. Process Safety and Environmental Protection 162:978–86. doi:10.1016/j.psep.2022.05.003.
  • Zhang, B., H. Liu, and B. J. Yan. 2019. Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane–oxygen mixture. Fuel 236:975–83. doi:10.1016/j.fuel.2018.09.083.
  • Zhang, X., T. Wang, and X. S. Hou. 2016. Interaction between turbule and flame surface in low calorific value gas engine. Journal of Internal Combustion Engine 34 (6):537–42.
  • Zheng, Y. S., and C. Wang. 2009. Numerical simulation for the influence of variable cross-section tube on explosion characteristics of methane. Transaction of Beijing Institute of Technology 29 (11):947–49.
  • Zheng, K., M. G. Yu, L. G. Zheng, and X. B. Wen. 2018. Comparative study of the propagation of methane/air and hydrogen/air flames in a duct using large eddy simulation. Process Safety and Environmental Protection 120:45–56. doi:10.1016/j.psep.2018.08.025.
  • Zhou, N., Y. Mei, X. Li, B. Chen, W. Q. Huang, V. Rasouli, H. J. Zhao, and X. J. Yuan. 2021. Numerical simulation of the influence of vent conditions on hydrogen flame propagation. Combustion Science and Technology 193 (1):2331–49. doi:10.1080/00102202.2020.1736576.
  • Zhou, N., Y. Mei, X. Li, B. Chen, W. Q. Huang, H. J. Zhao, and X. J. Yuan. 2019. Numerical simulation on the influence of pipe section size on hydrogen flame propagation process in closed pipe. Combustion Science and Technology 193 (4):6111–625. doi:10.1080/00102202.2019.1667339.
  • Zhou, N., Y. Mei, X. Li, B. Chen, W. Q. Huang, H. J. Zhao, and X. J. Yuan. 2022. Numerical simulation of the influence of vent conditions on the characteristics of hydrogen explosion in confined space. Combustion Theory and Modelling 26 (2):241–59. doi:10.1080/13647830.2021.2008013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.