129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of aerobic and anoxic-oxic sequential batch reactors for treating textile wastewater

Pages 10107-10121 | Received 10 May 2023, Accepted 24 Jul 2023, Published online: 03 Aug 2023

References

  • Al-Amrani, W. A., P. E. Lim, C. E. Seng, and W. S. Wan Ngah. 2014. Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers 45 (2):609–16. doi:10.1016/J.JTICE.2013.06.032.
  • Albahnasawi, A., H. Agir, M. F. Cicerali, N. Özdoğan, E. Gurbulak, M. Yildirim, M. Eyvaz, and E. Yuksel. 2022. Performance of aerobic sequential batch reactor in the treatment of textile wastewaters. International Journal of Environmental Science and Technology 20 (1):791–800. doi:10.1007/S13762-022-04014-0/FIGURES/5.
  • Albahnasawi, A., E. Yüksel, M. Eyvaz, E. Gürbulak, E. Polat, and S. Arslan. 2020. Performances of anoxic-aerobic membrane bioreactors for the treatment of real textile wastewater. Global NEST Journal 22:22–27.
  • Ali, S. S., R. Al-Tohamy, and J. Sun. 2022. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Science of the Total Environment 806:150665. doi:10.1016/j.scitotenv.2021.150665.
  • American Public Health Assocation (APHA). 1997. Standard Methods for the Examination of Water and Wastewater. Method 4500-NH3, Nitrogen-Ammonia (Spectrophotometric). 20th ed., 4–108 to 4–117.
  • Balapure, K., N. Bhatt, and D. Madamwar. 2015. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresource Technology 175:1–7. doi:10.1016/j.biortech.2014.10.040.
  • Benkhaya, S., S. M’rabet, and A. el Harfi. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6 (1):e03271. doi:10.1016/J.HELIYON.2020.E03271.
  • Bidu, J. M., K. N. Njau, M. Rwiza, and B. van der Bruggen. 2023. Textile wastewater treatment in anaerobic reactor: Influence of domestic wastewater as co-substrate in color and COD removal. South African Journal of Chemical Engineering 43:112–21. doi:10.1016/J.SAJCE.2022.10.007.
  • Boonnorat, J., A. Kanyatrakul, A. Prakhongsak, R. Honda, P. Panichnumsin, and N. Boonapatcharoen. 2019. Effect of hydraulic retention time on micropollutant biodegradation in activated sludge system augmented with acclimatized sludge treating low-micropollutants wastewater. Chemosphere 230:606–15. doi:10.1016/J.CHEMOSPHERE.2019.05.039.
  • Brillas, E. 2023. Solar photoelectro-Fenton: A very effective and cost-efficient electrochemical advanced oxidation process for the removal of organic pollutants from synthetic and real wastewaters. Chemosphere 327:138532. doi:10.1016/J.CHEMOSPHERE.2023.138532.
  • Cinperi, N. C., E. Ozturk, N. O. Yigit, and M. Kitis. 2019. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. Journal of Cleaner Production 223:837–48. doi:10.1016/j.jclepro.2019.03.166.
  • Didier de Vasconcelos, G. M., J. Mulinari, S. M. de Arruda Guelli Ulson de Souza, A. A. Ulson de Souza, D. de Oliveira, and C. J. de Andrade. 2021. Biodegradation of azo dye-containing wastewater by activated sludge: A critical review. World Journal of Microbiology & Biotechnology 37 (6):1–12. doi:10.1007/S11274-021-03067-6.
  • Federation, W. E., 1999. Standard methods for the examination of water and wastewater part 1000 standard methods for the examination of water and wastewater.
  • Federation, W. E. 2017. Standard methods for the examination of water and wastewater standard methods for the examination of water and wastewater. Public Health 51 (6):940–940. doi:10.2105/AJPH.51.6.940-a.
  • Friha, I., M. Bradai, D. Johnson, N. Hilal, S. Loukil, F. Ben Amor, F. Feki, J. Han, H. Isoda, and S. Sayadi. 2015. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. Journal of Environmental Management 160:184–92. doi:10.1016/J.JENVMAN.2015.06.008.
  • Gadow, S. I., and Y. Y. Li. 2020. Development of an integrated anaerobic/aerobic bioreactor for biodegradation of recalcitrant azo dye and bioenergy recovery: HRT effects and functional resilience. Bioresource Technology Reports 9:100388. doi:10.1016/J.BITEB.2020.100388.
  • González, N., M. V. Aguinaga Martínez, C. E. Domini, and C. C. Acebal. 2023. Current trends in sample preparation for the determination of primary aromatic amines in environmental samples. Trends in Environmental Analytical Chemistry 37:e00197. doi:10.1016/J.TEAC.2023.E00197.
  • Ilić Đurđić, K., R. Ostafe, A. Đurđević Đelmaš, N. Popović, S. Schillberg, R. Fischer, and R. Prodanović. 2020. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology 136:109509. doi:10.1016/J.ENZMICTEC.2020.109509.
  • Işık, M., and D. T. Sponza. 2007. Toxic/Hazardous Substances and environmental engineering decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions decolorization of azo dyes under batch anaerobic 4529. doi:10.1081/ESE-120028417.
  • Jagaba, A. H., S. R. M. Kutty, M. H. Isa, A. C. Affam, N. Aminu, S. Abubakar, A. Noor, I. M. Lawal, I. Umaru, and I. Hassan. 2022. Effect of environmental and operational parameters on sequential batch reactor systems in dye degradation. 193–225. doi:10.1007/978-981-16-5932-4_8.
  • Jena, J., R. Kumar, M. Saifuddin, A. Dixit, and T. Das. 2016. Anoxic–aerobic SBR system for nitrate, phosphate and COD removal from high-strength wastewater and diversity study of microbial communities. Biochemical Engineering Journal 105:80–89. doi:10.1016/J.BEJ.2015.09.007.
  • Ji, J., Y. Li, and J. Ni, 2022. Aerobic/Anaerobic membrane bioreactor in textile wastewater 245–271. 10.1007/978-981-19-0545-2_9
  • Journal, T. A., and W. Reuse. 2018. Anaerobic–aerobic sequencing batch reactor treating azo dye containing wastewater: Effect of high nitrate ions and salt. Journal of Water Reuse and Desalination 8 (2):251–61. doi:10.2166/wrd.2017.132.
  • Kapoor, R. T., M. Danish, R. S. Singh, M. Rafatullah, and A. K. Abdul. 2021. Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering 43:102255. doi:10.1016/J.JWPE.2021.102255.
  • Khan, M. D., A. Singh, M. Z. Khan, S. Tabraiz, and J. Sheikh. 2023. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. Journal of Water Process Engineering 53:103579. doi:10.1016/J.JWPE.2023.103579.
  • Khehra, M. S., H. S. Saini, D. K. Sharma, B. S. Chadha, and S. S. Chimni. 2006. Biodegradation of azo dye C.I. Acid Red 88 by an anoxic–aerobic sequential bioreactor. Dyes and Pigments 70 (1):1–7. doi:10.1016/J.DYEPIG.2004.12.021.
  • Kong, F., H. Y. Ren, D. Liu, Z. Wang, J. Nan, N. Q. Ren, and Q. Fu. 2022. Improved decolorization and mineralization of azo dye in an integrated system of anaerobic bioelectrochemical modules and aerobic moving bed biofilm reactor. Bioresource Technology 353:127147. doi:10.1016/J.BIORTECH.2022.127147.
  • Lai, X., N. Huang, X. Zhao, Y. Li, Y. He, J. Li, J. Deng, and X. A. Ning. 2023. Oxidation of simulated wastewater by Fe2±catalyzed system: The selective reactivity of chlorine radicals and the oxidation pathway of aromatic amines. Chemosphere 317:137816. doi:10.1016/J.CHEMOSPHERE.2023.137816.
  • Li, Y., Y. An, R. Zhao, Y. Zhong, S. Long, J. Yang, J. Li, and H. Zheng. 2022. Synergetic removal of oppositely charged dyes by co-precipitation and amphoteric self-floating capturer: Mechanism investigation by molecular simulation. Chemosphere 296:134033. doi:10.1016/J.CHEMOSPHERE.2022.134033.
  • Louhichi, B., F. Gaied, K. Mansouri, and M. R. Jeday. 2022. Treatment of textile industry effluents by Electro-Coagulation and Electro-Fenton processes using solar energy: A comparative study. Chemical Engineering Journal 427:131735. doi:10.1016/J.CEJ.2021.131735.
  • Lun, Y. E., S. R. S. Abdullah, H. A. Hasan, A. R. Othman, S. B. Kurniawan, M. F. Imron, A. L. Falahi, O. A. Said, N. S. M. Sharuddin, S. S. N. Ismail, et al. 2022. Integrated emergent-floating planted reactor for textile effluent: Removal potential, optimization of operational conditions and potential forthcoming waste management strategy. Journal of Environmental Management 311:114832. doi:10.1016/J.JENVMAN.2022.114832.
  • Macherey-Nagel, H. R. W. 2018. Determination of aromatic amines from azo colorants according to DIN EN ISO 17234-1, LC Tech. 1–18.
  • Mahlangu, O. T., G. Mamba, and B. B. Mamba. 2023. A facile synthesis approach for GO-ZnO/PES ultrafiltration mixed matrix photocatalytic membranes for dye removal in water: Leveraging the synergy between photocatalysis and membrane filtration. Journal of Environmental Chemical Engineering 11 (3):110065. doi:10.1016/J.JECE.2023.110065.
  • Mousazadeh, M., H. Kabdaşlı, N. I. Ahmadpari, E. Shakeri, I. Kabdaşlı, H. A. Jamali, N. S. Graça, M. Mahdi Emamjomeh, and M. Mousazadeh. 2021. Electrocoagulation-flotation treatment followed by sedimentation of carpet cleaning wastewater: Optimization of key operating parameters via RSM-CCD. Desalination & Water Treatment 227:163–76. doi:10.5004/dwt.2021.27307.
  • Muda, K., A. Aris, M. R. Salim, Z. Ibrahim, M. C. M. van Loosdrecht, A. Ahmad, and M. Z. Nawahwi. 2011. The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Research 45 (16):4711–21. doi:10.1016/j.watres.2011.05.012.
  • Ning, X. A., J. Y. Liang, R. J. Li, Z. Hong, Y. J. Wang, K. L. Chang, Y. P. Zhang, and Z. Y. Yang. 2015. Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Chemosphere 134:367–73. doi:10.1016/j.chemosphere.2015.05.015.
  • Pratheba, S., N. Balasundaram, and P. Preethi. 2023. Isolated microbial decolorization of textile dye effluent. Materials Today: Proceedings 72:3133–36. doi:10.1016/J.MATPR.2022.09.517.
  • Rathi, B. S., P. S. Kumar, and D. V. N. Vo. 2021. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the Total Environment 797:149134. doi:10.1016/j.scitotenv.2021.149134.
  • Reddy, S., and J. Osborne. 2022. An insight on the advancements of biological technologies in the bioremediation of textile effluents. Urban Water Journal 19 (5):468–80. doi:10.1080/1573062X.2022.2030369.
  • Shen, M., X. Li, Y. Zhang, J. Suwanboriboon, W. Meesiri, and W. Wongkokua. 2018. An application of spectrophotometer for ADMI color measurement. Journal of Physics Conference Series 1144:012064. doi:10.1088/1742-6596/1144/1/012064.
  • Silva Júnior, L. P., I. R. M. Câmara, A. B. S. da Silva, F. M. Amaral, F. Motteran, B. S. Fernandes, and S. Gavazza. 2022. Overview of biological technologies for azo dye removal 1–38. doi:10.1007/978-981-19-0545-2_1.
  • Taheri, M., N. Fallah, and B. Nasernejad. 2023. Comparison of high-concentration azo dye removal by long HRT in MSBRs’ bioaugmented with GAC and sponge media. Environmental Science and Pollution Research 30 (1):1201–15. doi:10.1007/S11356-022-22055-3/TABLES/5.
  • Teixeira, A. R., N. Jorge, J. R. Fernandes, M. S. Lucas, and J. A. Peres. 2022. Textile dye removal by acacia dealbata link. pollen adsorption combined with UV-A/NTA/fenton process. Topics in Catalysis 65 (9–12):1045–61. doi:10.1007/S11244-022-01655-W/FIGURES/15.
  • Torres, J. M., S. Fiore, A. Lanzetta, S. Papirio, A. Oliva, A. Cesaro, L. Pucci, E. M. Capasso, G. Esposito, and F. Pirozzi. 2023. Ozonation processes for color removal from urban and leather tanning wastewater. Water 15 (13):2362 15, 2362. doi:10.3390/W15132362.
  • Touliabah, H. E., M. M. El-Sheekh, M. M. Ismail, and H. El-Kassas, 2022. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants.
  • Türk, F. N., H. Çiftçi, and H. Arslanoğlu. 2022. Removal of basic yellow 51 dye by using ion exchange resin obtained by modification of byproduct sugar beet pulp. Sugar Technology 25 (3):569–79. doi:10.1007/S12355-022-01207-2/FIGURES/2.
  • van der Zee, F. P., and S. Villaverde. 2005. Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research 39 (8):1425–40. doi:10.1016/J.WATRES.2005.03.007.
  • Venkatesh, S., A. R. Quaff, K. Venkatesh, K. Venkatesh, A. R. Quaff, and S. Venkatesh. 2017. Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. Journal of Applied Research and Technology 15 (4):340–45. doi:10.1016/J.JART.2017.02.006.
  • Wong, S., N. A. Ghafar, N. Ngadi, F. A. Razmi, I. M. Inuwa, R. Mat, and N. A. S. Amin. 2020. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific Reports 10 (1 10):1–13. doi:10.1038/s41598-020-60021-6.
  • Wu, J., Y. Huang, and X. Huang. 2022. Efficient trap of polar aromatic amines in environmental waters by electroenhanced solid phase microextraction based on porous monolith doped with carboxylic carbon nanotubes. Separation and Purification Technology 282:120067. doi:10.1016/J.SEPPUR.2021.120067.
  • Xie, J., X. Zou, Y. Chang, J. Xie, H. Liu, M. H. Cui, T. C. Zhang, and C. Chen. 2023. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment. Science of the Total Environment 855:158912. doi:10.1016/J.SCITOTENV.2022.158912.
  • Xu, H., B. Yang, Y. Liu, F. Li, X. Song, X. Cao, and W. Sand. 2021. Evolution of microbial populations and impacts of microbial activity in the anaerobic-oxic-settling-anaerobic process for simultaneous sludge reduction and dyeing wastewater treatment. Journal of Cleaner Production 282:124403. doi:10.1016/j.jclepro.2020.124403.
  • Yakamercan, E., and A. Aygün. 2020. Anaerobic/Aerobic cycle effect on di(2-ethylhexyl) phthalate and pentachlorophenol removal from real textile wastewater in sequencing batch biofilm reactor. Journal of Cleaner Production 273:122975. doi:10.1016/J.JCLEPRO.2020.122975.
  • Yuan, Y., W. Yin, Y. Huang, A. Feng, T. Chen, L. Qiao, H. Cheng, W. Liu, Z. Li, C. Ding, et al. 2023. Intermittent electric field stimulated reduction-oxidation coupled process for enhanced azo dye biodegradation. Chemical Engineering Journal 451:138732. doi:10.1016/J.CEJ.2022.138732.
  • Zhang, C., H. Chen, G. Xue, Y. Liu, S. Chen, and C. Jia. 2021. A critical review of the aniline transformation fate in azo dye wastewater treatment. Journal of Cleaner Production 321:128971. doi:10.1016/j.jclepro.2021.128971.
  • Zhou, C. Q., H. K. Gu, C. H. Wei, H. W. Rong, and H. Y. Ng. 2022. Dyeing and finishing wastewater treatment via a low-cost hybrid process of hydrolysis-acidification and alternately anoxic/oxic sequencing batch reactor with synchronous coagulation. Journal of Water Process Engineering 49:102939. doi:10.1016/J.JWPE.2022.102939.
  • Zhou, L., Y. Lai, R. Zeng, B. Zhao, Y. Jian, P. Ou, W. Zhang, H. Y. Ng, and W. Q. Zhuang. 2022. Core carbon fixation pathways associated with cake layer development in an anoxic-oxic biofilm-membrane bioreactor treating textile wastewater. Science of the Total Environment 835:155483. doi:10.1016/J.SCITOTENV.2022.155483.
  • Zhou, L. J., Z. Y. Rong, W. Gu, D. L. Fan, J. N. Liu, L. L. Shi, Y. H. Xu, and Z. Y. Liu. 2020. Integrated fate assessment of aromatic amines in aerobic sewage treatment plants. Environmental Monitoring and Assessment 192 (5): Assess 192. doi:10.1007/s10661-020-8111-y.
  • Zhu, L., W. Jia, X. Wan, P. Zhuang, G. Ma, J. Jiao, and Y. Zhang. 2023. Advancing metabolic networks and mapping updated urinary metabolic fingerprints after exposure to typical carcinogenic heterocyclic aromatic amines. Environmental Pollution 319:120936. doi:10.1016/J.ENVPOL.2022.120936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.