97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process steam generation from low-grade waste heat in a direct- contact adsorption heat pump based on superhydrophobic surface-modified Zeolite 13X

, , , , & ORCID Icon
Pages 9910-9927 | Received 16 Mar 2023, Accepted 26 Jul 2023, Published online: 02 Aug 2023

References

  • Ahn, H., and C. H. Lee. 2004. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chemical Engineering Science 59 (13):2727–43. doi:10.1016/j.ces.2004.04.011.
  • Bevington, P. R., D. K. Robinson, J. M. Blair, A. J. Mallinckrodt, and S. McKay. 1969. Data reduction and error analysis for the physical sciences. Computers in Physics. 7 (4):415–16. New York: McGraw-Hill. doi:10.1063/1.4823194.
  • Bonaccorsi, L., L. Calabrese, S. Alioto, P. Bruzzaniti, and E. Proverbio. 2017a. Surface silanation of alumina-silica zeolites for adsorption heat pumping. Renew Energy 110:79–86. doi:10.1016/j.renene.2016.09.030.
  • Bonaccorsi, L., L. Calabrese, S. Alioto, P. Bruzzaniti, and E. Proverbio. 2017b. Surface silanation of alumina-silica zeolites for adsorption heat pumping. Renew Energy 110:79–86. doi:10.1016/j.renene.2016.09.030.
  • Buzzi, F., M. D. Palo, and R. Gabbrielli. 2022. Energy performance assessment of a novel zeolite-water direct contact adsorptive heat pump for waste heat recovery. Energy Conversion and Management 13:100169. doi:10.1016/j.ecmx.2021.100169.
  • Chaatouf, D., A. G. Ghiaus, and S. Amraqui. 2022. Optimization of a solar air heater using a phase change material for drying applications. Journal of Energy Storage 55:105513. doi:10.1016/j.est.2022.105513.
  • Fil, B. E., and S. Garimella. 2022. Heat recovery, adsorption thermal storage, and heat pumping to augment gas-fired tumble dryer efficiency. Journal of Energy Storage 48:103949. doi:10.1016/j.est.2021.103949.
  • Hauer, A. 2007. Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems. Adsorption 13:399–405. doi:10.1007/s10450-007-9054-0.
  • International Energy Agency. 2021. World energy outlook. Accessed October, 2021. https://www.iea.org/reports/world-energy-outlook-2021.
  • Kawakami, Y., Y. Abe, K. Ito, K. Marumo, T. Aoyama, M. Tanino. 2013. Development of bench-scaled adsorption type steam recovery system for generating high temperature steam from hot waste water. American Institute of Chemical Engineers Annual Meeting, San Francisco, United States, November 3-8. https://www.researchgate.net/publication/267309241_316959_Development_of_Bench-Scaled_Adsorption_Type_Steam_Recovery_System_for_Generating_High_Temperature_Steam_From_Hot_ Waste_Water.
  • Kim, M., J. W. Lee, and S. Kim . 2022. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application. Journal of Cleaner Production 337:130597. doi:10.1016/j.jclepro.2022.130597.
  • Kim, K. M., H. T. Oh, S. J. Lim, K. Ho, Y. Park, and C. H. Lee. 2016. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. Journal of Chemical & Engineering Data 61 (4):1547–54. doi:10.1021/acs.jced.5b00927.
  • Liu, C., Y. K. Li, and R. Parnas. 2022. Shortcut design of sulfur reduction distillation system using pseudo-component description of biodiesel and the sulfur contaminants. Chemical Engineering Journal 430:133028. doi:10.1016/j.cej.2021.133028.
  • Li, S. L., J. Y. Wu, Z. Z. Xia, and R. Z. Wang. 2011. Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite. Energy Conversion and Management 52 (2):1501–06. doi:10.1016/j.enconman.2010.10.015.
  • Li, G. Y., B. Xue, X. R. He, T. T. Chen, and X. L. Wei. 2022. Superhydrophobic surface-modified zeolite to regulate the migration of nonadsorbed liquid water in an open-loop adsorption heat pump. Applied Thermal Engineering 215:118929. doi:10.1016/j.applthermaleng.2022.118929.
  • Lu, Z. S. 2020. Operation performance study and numerical analysis of the multi-objective adsorption system driven by low-grade heat of solar energy and industrial waste heat. Solar Energy 199:575–84. doi:10.1016/j.solener.2020.02.060.
  • Maddah, S., M. D. Dashtebayaz, and O. Maddah. 2020. 4E analysis of thermal recovery potential of industrial wastewater in heat pumps: An invisible energy resource from the Iranian casting industry sector. Journal of Cleaner Production 265:121824. doi:10.1016/j.jclepro.2020.121824.
  • Oktariani, E., A. Noda, K. Nakashima, K. Tahara, B. Xue, K. Nakaso, and J. Fukai. 2012. Potential of a direct contact adsorption heat pump system for generating steam from waste water. International Journal of Energy Research 36 (11):1077–87. doi:10.1002/er.1855.
  • Osterman, E., and U. Stritih. 2021. Review on compression heat pump systems with thermal energy storage for heating and cooling of buildings. Journal of Energy Storage 39:102569. doi:10.1016/j.est.2021.102569.
  • Pal, A., M. Shahrom, R. Shahrom, M. Moniruzzaman, C. D. Wilfred, S. Mitra, K. Thu, and B. B. Saha. 2017. Ionic liquid as a new binder for activated carbon based consolidated composite adsorbents. Chemical Engineering Journal 326 (15):980–86. doi:10.1016/j.cej.2017.06.031.
  • Pan, Q. W., J. J. Peng, and R. Z. Wang. 2021. Application analysis of adsorption refrigeration system for solar and data center waste heat utilization. Energy Conversion and Management 228:113564. doi:10.1016/j.enconman.2020.113564.
  • Pinheiro, J. M., S. Salústio, J. Rocha, A. A. Valente, and C. M. Silva. 2020. Adsorption heat pumps for heating applications. Renewable and Sustainable Energy Reviews 119:109528. doi:10.1016/j.rser.2019.109528.
  • Popuri, A. K., and P. Garimella. 2020. Heat transfer studies in a laboratory vertical riser system suitable for waste heat recovery from industrial waste exhaust gases. Chemical Engineering Communications 207:1616–23. doi:10.1080/00986445.2019.1708739.
  • Pronyk, C., S. Cenkowski, and W. E. Muir. 2010. Drying kinetics of instant asian noodles processed in superheated steam. Drying Technology 28 (2):304–14. doi:10.1080/07373930903534545.
  • Reis, G. S., B. G. Cazacliu, A. Cothenet, P. Poullain, M. Wilhelm, C. H. Sampaio, W. A. Eder Claudio Lima, J. M. Torrenti, and J.-M. Torrenti. 2020. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. Journal of Cleaner Production 258:120733. doi:10.1016/j.jclepro.2020.120733.
  • Rocky, K. A., A. Pal, T. H. Rupam, B. B. S. Nasruddin, and B. B. Saha. 2021. Zeolite-graphene composite adsorbents for next generation adsorption heat pumps. Microporous & Mesoporous Materials 313:110839. doi:10.1016/j.micromeso.2020.110839.
  • Sehrawat, R., P. K. Nema, and B. P. Kaur. 2016. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling. Innovative Food Science and Emerging Technologies 34:285–301. doi:10.1016/j.ifset.2016.02.003.
  • Sharma, M., A. K. Tiwari, P. Dumka, and D. R. Mishra. 2018. Performance evaluation of long still for the utilization of industrial hot waste water. Journal of Energy Storage 20:485–91. doi:10.1016/j.est.2018.10.023.
  • Son, K. N., T. M. J. Richardson, and G. E. Cmarik. 2019. Equilibrium adsorption isotherms for H2O on zeolite 13X. Journal of Chemical & Engineering Data 64 (3):1063–71. doi:10.1021/acs.jced.8b00961.
  • Wang, B., Y. Zhu, Q. Qin, H. Liu, and J. Zhu. 2021. Development on hydrophobic modification of aluminosilicate and titanosilicate zeolite molecular sieves. Applied Catalysis A: General 611:117952. doi:10.1016/j.apcata.2020.117952.
  • Wu, D., J. T. Jiang, B. Hu, and R. Z. Wang. 2020. Experimental investigation on the performance of a very high temperature heat pump with water refrigerant. Energy 98:116427. doi:10.1016/j.energy.2019.
  • Wu, Z. X., S. J. You, T. T. Jiang, H. Zhang, Y. R. Wang, Y. Jiang, L. Sha, and S. Wei. 2022. Model development and numerical analysis of a vertical falling film absorption heat pump. Journal of Cleaner Production 331:129967. doi:10.1016/j.jclepro.2021.129967.
  • Xue, B., Y. Iwama, Y. Tanaka, K. Nakashima, A. T. Wijayanta, K. Nakaso, and J. Fukai. 2013. Cyclic steam generation from a novel zeolite–water adsorption heat pump using low-grade waste heat. Experimental Thermal and Fluid Science 46:54–63. doi:10.1016/j.expthermflusci.2012.11.020.
  • Xue, B., X. R. Meng, X. L. Wei, K. Nakaso, and J. Fukai. 2015. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump. Application Thermal Engineering 88:451–58. doi:10.1016/j.applthermaleng.2014.11.050.
  • Ye, H., Z. Yuan, S. M. Li, and L. Zhang. 2014. Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system. Application Thermal Engineering 62 (2):690–96. doi:10.1016/j.applthermaleng.2013.10.035.
  • Zhang, L. S., B. Xue, T. T. Chen, and G. R. Li. 2021. Silane functionalization on zeolite 13X surface for direct steam generation in a solid sorption heat pump. Energy Conversion and Management 244:114457. doi:10.1016/j.enconman.2021.114457.
  • Zou, C., G. C. Long, X. H. Zeng, K. L. Ma, and Y. J. Xie. 2021. Hydration and multiscale pore structure characterization of steam-cured cement paste investigated by X-ray CT. Construction Build Mater 282:122629. doi:10.1016/j.conbuildmat.2021.122629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.